RESUBMISSIONS
Texas A&M University
Core Curriculum Cover Sheet
Initial Request for a course to be considered for the Fall 2014 Core Curriculum

1. This request is submitted by (department name): ENGLISH

2. Course prefix and number: ENGL 203

3. Texas Common Course Number: __________

4. Complete course title: Writing about Literature

5. Semester credit hours: __________

6. This request is for consideration in the following Foundational Component Area:
 - Communication
 - Creative Arts
 - Mathematics
 - American History
 - Life and Physical Sciences
 - Government/Political Science
 - Language, Philosophy and Culture
 - Social and Behavioral Sciences

7. This course should also be considered for International and Cultural Diversity (ICD) designation:
 - Yes
 - No

8. How frequently will the class be offered? Every summer, fall and spring semester

9. Number of class sections per semester: 18 - 30

10. Number of students per semester: 400 – 700

11. Historic annual enrollment for the last three years: 1179 1311 1351

This completed form must be attached to a course syllabus that sufficiently and specifically details the appropriate core objectives through multiple lectures, outside activities, assignments, etc. **Representative from department submitting request should be in attendance when considered by the Core Curriculum Council.**

13. Submitted by: [Signature]

 Course Instructor

 Date: 18 Feb 2013

 [Signature]

 Date: 2/19/13

14. Department Head

 [Signature]

 Date: 3/20/13

15. College Dean/Designee

 [Signature]

 Date

For additional information regarding core curriculum, visit the Texas Higher Education Coordinating Board website at www.thecb.state.tx.us/corecurriculum2014

See form instructions for submission/approval process.
Texas A&M University

Core Curriculum

Initial Request for a Course Addition to the Fall 2014 Core Curriculum

Foundational Component Area: Communication

In the box below, describe how this course meets the Foundational Component Area description for Communication. Courses in this category focus on developing ideas and expressing them clearly, considering the effect of the message, fostering understanding, and building the skills needed to communicate persuasively. Courses involve the command of oral, aural, written, and visual literacy skills that enable people to exchange messages appropriate to the subject, occasion, and audience.

The proposed course must contain all elements of the Foundational Component Area. How does the proposed course specifically address the Foundational Component Area definition above?

The course addresses the Foundational Component Area in the following ways:

English 203 introduces students to communicating persuasively about literature, for the purpose of enhancing skills in academic and professional communication. Learning goals are, to consider the effects of messages, foster understanding, and improve skills necessary to communicate persuasively on issues raised and elaborated by literature from social, individual, and ethical perspectives. The course focuses on texts drawn from various historical periods while also representing a variety of literary genres (drama, novel, short story, poetry, autobiography, film). Students will work to develop the critical thinking skills that lead to persuasive communication that interprets literature and provides the richest possible evaluative reading and writing experience by completing assignments in writing, analytical reading, and presentations based on the principles of visual rhetoric as applied to literature and/or films. The course provides extensive study and practice in argumentation techniques, considering differing audiences as applied to writing about literature and involving a professional level of command in oral, aural, written and visual literacy skill.

Core Objectives

Describe how the proposed course develops the required core objectives below by indicating how each learning objective will be addressed, what specific strategies will be used for each objective and how student learning of each objective will be evaluated.

The proposed course is required to contain each element of the Core Objective.

Critical Thinking (to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information):

CTS: The course will enhance critical thinking skills through regular reading of literature, presentations on the reading (aural skill building), through class discussion (including multi-modal visual, oral, and Power Point presentations), and extensive writing.

The evaluation of critical thinking skills will be based on analytical inquiry as demonstrated in class discussion, written work synthesizing critical perspectives to interpret literature, standard exams, oral creative and innovative presentations, and/or participation in class discussions.

Communication (to include effective development, interpretation and expression of ideas through written, oral and visual communication):
Texas A&M University

Core Curriculum

Initial Request for a Course Addition to the Fall 2014 Core Curriculum

CS: The course promotes communication skills through small and large group discussion of major literary ideas, authors, periods, and social, individual and ethical issues central to course readings in literature and/or film (visual) and appropriate critical approaches; the course promotes communication skills through extensive, regular practice (formal assignments of argumentation about literature for multiple audiences), in persuasive forms of writing about literature. The evaluation of communication skills will be based on written work, exams, oral, aural and multi-modal visual presentations, and/or oral participation during class discussions, individually and/or in team groups.

Teamwork (to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal):

T: The course enhances the ability to work in teams by providing students with structured opportunities in and out of class to collaborate with classmates on relevant projects employing written skills, oral presentational skills, and classroom tasks on literature. The evaluation of teamwork ability will be based on participation in structured collaborative learning projects making interactive, cooperative use of differing points of view in course readings, writing assignments, and oral presentational skills to support a shared purpose or goal within audience-related environments.

Personal Responsibility (to include the ability to connect choices, actions and consequences to ethical decision-making):

PR: The course teaches personal responsibility by enhancing students' understanding of how to use sources ethically while composing a persuasive argument or answer to an essay question about literature; the course teaches personal responsibility by structured practice in teams and group discussion about literary ideas and issues. The evaluation of personal responsibility will be based on assignments in which students are expected ethically to cite another person's work in composing oral, aural, multi-modal presentations and/or written research essays.

Please be aware that instructors should be prepared to submit samples/examples of student work as part of the future course recertification process.
Course Title and Number: English 203: Writing about Literature
Instructor: Professor Christine Murray
Contact Information: 358 LAAH
Office Hours:
Term:
Class Meeting
Times/Location:

Catalog Course Description:
Engl. 203 Writing about Literature. (3-0) Credit 3. Enhancement of communication and persuasive skills through the study of literature and audience; appropriate genres, thematic issues (social, individual, ethical) and critical approaches to literature; exploration of literacy skills as these involve professional levels of command in the oral, aural, visual and written analysis and interpretation of literature.

Course Description:
English 203 introduces students to communicating persuasively about literature, for the purpose of enhancing skills in academic and professional communication. Learning goals are, to consider the effects of messages, foster understanding, and improve skills necessary to communicate persuasively on issues raised and elaborated by literature from social, individual, and ethical perspectives. The course focuses on texts drawn from various historical periods while also representing a variety of literary genres (drama, novel, short story, poetry, autobiography, film). Students will work to develop the critical thinking skills that lead to persuasive communication that interprets literature and provides the richest possible evaluative reading and writing experience by completing assignments in writing, analytical reading, and presentations based on the principles of visual rhetoric as applied to literature and/or films. The course provides extensive study and practice in argumentation techniques, considering differing audiences as applied to writing about literature and involving a professional level of command in oral, aural, written and visual literacy skill.

Learning Outcomes:
At the end of the semester, students will be able to do the following:
- Communicate clearly on key issues, themes, and ideas expressed multi-modally in and about literature: in forms involving oral, aural, visual and written assignments
- Identify major authors, works, and critical approaches regarding literature
- Communicate clearly and persuasively to demonstrate critical thinking about principle themes and ideas in literature
- Communicate clearly to foster understanding in grouped team-work assignments
- Research, synthesize, analyze, write and present orally to communicate clear persuasive ideas interpreting literature and its social, individualized, and ethical ideas and contexts
- Ethically synthesize, cite and document ideas and sources in all forms of presentation about literature

Core Curriculum Objectives:
- Critical Thinking Skills (CTS): The course will enhance critical thinking skills through regular reading of literature, presentations on the reading (aural skill building), through class discussion (including multi-modal visual, oral, and Power Point presentations), and extensive writing assignments focused on critical approaches to analysis and interpretation of literature.
• **Communication Skills (CS):** The course promotes communication skills through small and large group discussion of major literary ideas, authors, periods, and social, individual and ethical issues central to course readings in literature and/or film (visual) and appropriate critical approaches; the course promotes communication skills through extensive, regular practice (formal assignments of argumentation about literature for multiple audiences), in persuasive forms of writing about literature.

• **Teamwork (T):** The course enhances the ability to work in teams by providing students with regular opportunities in and out of class to collaborate with classmates on relevant projects employing written skills, oral presentational skills, and classroom tasks on literature.

• **Personal Responsibility (PR):** The course teaches personal responsibility by enhancing students’ understanding of how to use sources ethically while composing a persuasive argument or answer to an essay question about literature; the course teaches personal responsibility by regular practice in teams and group discussion about literary ideas and issues.

Assessment of Core Objectives:

• **CTS:** The assessment of critical thinking skills will be based on written work, exams, oral presentations, and/or participation in class discussions.

• **CS:** The assessment of communication skills will be based on written work, exams, oral presentations, and/or participation during class discussions, individually and/or in teamed groups.

• **T:** The assessment of teamwork ability will be based on participation in collaborative learning projects making interactive, cooperative use of differing points of view in course readings, writing assignments, and oral presentational skills to support a shared purpose or goal.

• **PR:** The assessment of personal responsibility will be based on assignments in which students are expected ethically to cite another person’s work in composing written research essays and/or oral presentations.

Grading:

<table>
<thead>
<tr>
<th>Major Grade Categories/Assignments</th>
<th>Percentage of Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Writing Project 1: Essay: Critical Analysis of a Short Story</td>
<td>15%</td>
</tr>
<tr>
<td>Major Writing Project 2: Essay: Poetry Explication</td>
<td>15%</td>
</tr>
<tr>
<td>Major Writing Project 3: Essay: Play Analysis</td>
<td>20%</td>
</tr>
<tr>
<td>Major Writing Project 4: Essay: Researched Argument/Novel/Oral-Visual Presentation</td>
<td>25%</td>
</tr>
<tr>
<td>Grammar and Mechanics Exercises</td>
<td>10%</td>
</tr>
<tr>
<td>Teamed Group Work and In-class Activities; teamed group reading facilitation, rough drafts, peer review workshops, reading responses: due each week in class activities</td>
<td>15%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Teamed Group-work Rubric: In structured, predetermined roles and duties, each group member contributes equally to the whole project for an equal percentage of the overall project grade. Each group completes not only the project as given, but also a project evaluative form detailing the roles and duties of members. The grade is assessed by instructor review of the oral and multimedia presentation and the details of the individually completed project evaluative form. The emphasis of the group-work projects is on cooperation and negotiation, equally distributed work, and individual responsibility to the group and the project’s final outcome. The entire class is the intended audience for the group-work presentation; each member of the audience will provide feedback according to a structured format focused on the learning goals of the group-work project, as well as strengths and areas in need of improvement (quantity and quality of preparation, quality of researched support and evidentiary materials, modes of and quality in delivery).

Grading Scale: A (90-100) B (80-89) C (70-79) D (60-69) F (0-59)
Attendance and Absenteeism: see policies in general: http://student-rules.tamu.edu/rule07, and policies in particular, Student Rules 7.1.6.1 and 7.1.6.2. Students are required to be in class at the stated times, and to turn in work as instructed, on the stated due dates.

Requirements: All Major Writing Projects submitted for a grade must be computer-typed and must ethically cite and document all sources in the proper MLA format. All Major Writing Projects must focus on one or more of the texts read in class and offer a close reading and interpretive analysis of the literary text(s). Overall, the Major Writing Projects comprise a minimum of 40 pages of original, formal writing (10000 words) completed outside of class.

The process of writing persuasive arguments and giving presentations about literature with attention to audience in the Major Writing Projects includes: 1. prewriting and drafting with focus on various audience perspectives; 2. an introduction with a thesis statement and summary of main points to be discussed in the essay; 3. the middle section of interpretive analysis and persuasion where all points stated in the introduction are developed and appropriately supported with all sources ethically cited; 4. an original and fitting conclusion to the essay. 5. a proper MLA formatted Works Cited page where all sources are ethically included and property documented. 6. One presentation of a Major Writing Project (Final Researched Essay: on the novel), incorporating oral delivery, visual and aural examples, interpretive analysis and clear communication of ideas with the aim of persuasion. Student essays will go through at least one team-worked peer review in each Unit of the course.

Grades for essays are based on clarity and persuasiveness of argument, use of visual and aural examples in presentation, knowledge of the literary text(s); accurate citation of sources; and appropriate use of grammar, and mechanics. Research assignments in English 203 will use a variety of materials, print and electronic. Printed sources must be consulted and ethically integrated into the paper in proper MLA formatting for citing of sources. Students will be required to submit copies of any research sources used, notes and drafts with the final revision of the essays.

Reading assignments and peer review require critical thinking and response: Students will also need to apply critical thinking to their own work, revising with the goal of communicating ideas as clearly as possible. Daily practice in critical forms of writing about literature will be a vital part of the course. Students are expected to participate in collaborative, team work activities and class discussion, and to write during every class. Overall, the Major Writing Project assignments will emphasize the core objectives: critical thinking, communication skills, peer review team-work, and personal responsibility for original thought and the ethical citation of all sources. Through collaborative peer review exercises, the Major Writing Projects will provide practice in the core curriculum objective of Team Work.

Make-up work for absences is only acceptable with university-approved documentation. Other reasons for late work are unacceptable and will be graded as zero. See university policies at http://student-rules.tamu.edu

Textbook and Resource Material:

By enrolling in this course, you accept responsibility for purchasing all required textbooks and materials. Failure to purchase them will not be accepted as an excuse for late, missing, or incomplete assignments.

- Four standard-sized file folders with which to compile paper-based portfolios of all draft materials and final submissions of the 4 major writing projects (see below)
Calendar

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
<th>Reading/ Assignments due</th>
</tr>
</thead>
</table>
| 1 | **Critical Analysis of the Short Story**
- Reading Literature
- Responding in Writing to Literature | Introductions/ Syllabus
Gardner, readings Parts 1 and 4
Writing Argument in Response to Literature |
| 2 | • Plot and Character
• Point of View | Gardner, readings, Parts 1 and 4 |
| 3 | • Setting and Symbol
• Theme | Gardner, readings Parts 1 and 4 |
| 4 | • Tone and Irony
• Team Work Peer Review | Gardner, readings Parts 1 and 4
Due: Portfolio 1 |
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
</table>
| 5 | Poetry Explication | - Close Reading of Poetry: Who Is Speaking?
- Reading Aloud
- Sound, Rhythm and Meter
Gardner readings, Parts 2 and 4 |
| 6 | - Pecetic Voice(s) and Figurative Language | Gardner readings, Parts 2 and 4
Due: Grammar and Mechanics Exercises |
| 7 | - The Forms of Poetry
- Writing about Poetry
- Team Work Peer Review | Gardner readings, Parts 2 and 4
Due: Portfolio 2 |
| 8 | Analysis of Drama | - Delivery, Dialogue, Performance
Gardner readings, Parts 3 and 4 |
| 9 | - Character, Conflict, Plot
- Writing about Drama | Gardner readings, Parts 3 and 4 |
| 10 | - Stage, Scene, Setting
- Team Work Peer Review | Gardner readings, Parts 3 and 4
Due: Portfolio 3 |
| 11 | Critical Analysis of the Novel | - Theme, Historical Context, and the Idea of Time in the novel
Readings assigned from *Frankenstein* |
<p>| 12 | - Intertextuality: Dialogism, the Novel, and Discourse | Readings assigned from Frankenstein |</p>
<table>
<thead>
<tr>
<th></th>
<th>Symbolism, Influence, Miness and Significance—the Novel in its Other Lives: Film and Visual Storytelling</th>
<th>Readings assigned from Frankenstein</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Begin Presentations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Team Work Peer Review</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Revising, proofreading, submitting the Final Essay</td>
<td>Due: Portfolio 4</td>
</tr>
<tr>
<td></td>
<td>Finish Presentations</td>
<td></td>
</tr>
</tbody>
</table>

Americans with Disabilities Act (ADA)

The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services, in Cain Hall, Room B118, or call 845-1637. For additional information visit http://disability.tamu.edu

Academic Integrity

For additional information please visit: http://www.aggiehonor.tamu.edu

"An Aggie does not lie, cheat or steal, or tolerate those who do."
Department of Performance Studies

THAR 101 Introduction to Western Theatre

Request for International and Cultural Diversity (ICD) Designation

Note: This document is an addendum to the proposal already sent forward. It didn't make it to the CCC in time to be included on the February agenda, but it left the department before the CCC requested (in the February meeting) that ICD proposals be accompanied by an additional statement.

Introduction to Western Theatre examines every element of creating theatre, from technological aspects to social ramifications. Students are given an overview of historic and contemporary movements in theatre, as well as ways in which theatre has reflected and affected society. Western theatre has affected and been affected by global theatrical movements; in addition to spending two weeks of the semester focusing on global traditions, every topic is compared and contrasted to other diverse traditions or practices and is related to contemporary and local ones.

The study of modern theatre during the last 50 years challenges the traditional definition of theatre that is outlined earlier in the course. Students gain the foundation to better appreciate post-modern performances and the deconstruction of classical work. Modern theatre also becomes a tool for understanding how historical works can inform and affect modern life. This is enhanced by students seeing live productions of both recent and historic works, all realized with modern techniques and juxtaposed with modern life. The works of the past are how cultures identify and experience their cultural heritage today.

Approvals:

Claudia Miller 3/20/13
Department Head

College Dean/Designee 3/20/13
Date

Date
Texas A&M University

Core Curriculum

Initial Request for a lower division course included in the current Core Curriculum to be considered for the Fall 2014 Core Curriculum

1. This request is submitted by (department name): Horticultural Sciences

2. Course prefix and number: HORT 203

3. Texas Common Course Number:

4. Complete course title: Floral Design

5. Semester credit hours: 3 cr hr

6. This request is for consideration in the following Foundational Component Area:
 - [] Communication
 - [] Mathematics
 - [] Life and Physical Sciences
 - [] Language, Philosophy and Culture
 - [x] Creative Arts
 - [] American History
 - [] Government/Political Science
 - [] Social and Behavioral Sciences

7. This course should also be considered for International and Cultural Diversity (ICD) designation:
 - [] Yes
 - [x] No

8. How frequently will the class be offered? Spring, Summer I, and Fall

9. Number of class sections per semester: 4

10. Number of students per semester: 72

11. Historic annual enrollment for the last three years: 211 214 232

This completed form must be attached to a course syllabus that sufficiently and specifically details the appropriate core objectives through multiple lectures, outside activities, assignments, etc. Representative from department submitting request should be in attendance when considered by the Core Curriculum Council.

12. Submitted by:
 [Signature]

 Course Instructor

 Date: 1/30/2013

 Approvals:
 [Signature]

 Department Head

 Date: 2/9/13

 College Dean/Designee

 Date

For additional information regarding core curriculum, visit the Texas Higher Education Coordinating Board website at www.thecb.state.tx.us/corecurriculum2014

See form instructions for submission/approval process.
Texas A&M University
Core Curriculum
Initial Request for a Course Addition to the Fall 2014 Core Curriculum

Foundational Component Area: Creative Arts

In the box below, describe how this course meets the Foundational Component Area description for Creative Arts. Courses in this category focus on appreciation and analysis of creative artifacts and works of human imagination. Courses involve the synthesis and interpretation of artistic expression and enable critical, creative, and innovative communication about works of art.

How does the proposed course specifically address the Foundational Component Area definition above?

Floral Design introduces students to the field of “Creative Arts” through a unique lecture/lab combination. The lecture component of this course provides students with the tools and techniques utilized in all forms of art, including principles and elements of design, which provide students with the communicative and creative skills to create traditional art forms using flowers as the medium. The lab portion of this course provides students with the opportunity to use the information acquired in the lecture to create and critically analyze their own creative art designs with flowers.

Core Objectives

Describe how the proposed course develops the required core objectives below by indicating how each learning objective will be addressed, what specific strategies will be used for each objective and how student learning of each objective will be evaluated.

Critical Thinking (to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information):

Learning Outcomes:
Comprehend the principles and elements of design used in all forms of creative art.
Apply information learned through course lecture presentations, live in-class and in-lab demonstrations, and other media provided on the course web site to creating and analyzing innovative designs.
Analyze and interpret different forms of art, including, but not limited to, floral designs.

Assessment:
Students will take 3 unit exams given in the lecture portion of the course to assess their comprehension of the information provided them through the above sources.
Students will take a weekly quiz in the lab portion of the course to assess their ability to remember materials used in weekly design projects.
Students will create new floral designs weekly which will be assessed for innovation, application of design principles, and overall synergy of the compositional elements.

Communication (to include effective development, interpretation and expression of ideas through written, oral and visual communication):

Learning Outcomes:
Integrate the design process when assigned design problems
Participate in weekly hands-on design projects in lab.
Develop written assessments and reflections of designs
Participate in class discussions and actively listen to student presentations in both lecture and lab
Work effectively in a group to create a floral design composition and presentation around a given theme.
Texas A&M University

Core Curriculum

Initial Request for a Course Addition to the Fall 2014 Core Curriculum

Recognize the different design styles associated with different periods of history nationally and internationally.

Assessment:
Students will work in lab groups to create a floral design composition that highlights an assigned theme.
Assessment of this includes the quality of the end product (based on a rubric provided), and also the quality of the group presentation of their composition and the quality of individual participation in its creation (based on peer review and within group reflection on peer performance)
Students will work on individual portfolios which will include weekly written assessments of designs, reflections on the principles and elements of design, and the evaluation of given design examples. Assessment of this includes the quality of the end product (based on a rubric provided).
Students will have one unit exam assessing their comprehension of floral art history.

Teamwork (to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal):

Learning Outcome:
Work effectively in a group to create a design composition and presentation around a given theme.

Assessment:
Students will work in lab groups to create a floral design composition that highlights an assigned theme.
Assessment of this includes the quality of the end product (based on a rubric provided), and also the quality of the group presentation of their composition and the quality of individual participation in its creation (based on peer review and within group reflection on peer performance)

Social Responsibility (to include intercultural competence, knowledge of civic responsibility, and the ability to engage effectively in regional, national, and global communities):

Learning Outcomes:
Engage effectively in the local community by delivering one of their weekly lab designs to a person in the community that may benefit not only by the incorporation of floral design in their usual routine, but also by the human contact that will accompany the design.

Assessment:
Written surveys will be distributed to both the student and the recipient of the design, to assess: 1) Student understanding of the importance of civic responsibility and community involvement on special populations within that community, 2) impact of the design and visit of student on recipient’s quality of life and overall well-being.

Please be aware that instructors should be prepared to submit samples/examples of student work as part of the future course recertification process.
FLORAL DESIGN – HORT 203
Fall 2014 Syllabus
https://www-horticulture.tamu.edu/courses/
Enrollment Key: ____________________

INSTRUCTOR:
Dr. Jayne Zajicek
HFSB 422
j-zajicek@tamu.edu
Office Hours by appointment

DESCRIPTION:
Principles of design illustrated with the use of floral materials; floral design element and techniques including color, form, line and texture; history and utilization of floral art in society

PREREQUISITES:
None

SUPPORTING TEXT: Flowers: Creative Design (Johnson, McKinley, and Benz)

LEARNING OUTCOMES:
• Comprehend the principles and elements of design used in all forms of “creative art”.
• Analyze and interpret different forms of art, including, but not limited to, floral designs.
• Understand and integrate the design process for design problems.
• Participate in weekly hands-on design projects in lab.
• Participate in class discussions and actively listen to student presentations in both lecture and lab; Appreciate designs and opinions presented by their peers.
• Work effectively in a group to create a floral design composition and presentation assigned around a given theme.
• Recognize the different design styles associated with different periods of history nationally and internationally.
• Engage effectively in the local community by volunteering to deliver one weekly lab design to a person in the community that may benefit not only by the incorporation of floral design in their usual routine, but also by the human contact that will accompany the design.

COURSE GRADE:
Grades are based on a total 630 points from lecture and lab. A standard grading scale will be utilized. The instructor reserves the right to curve individual exam or course grades upward if an individual or the class performance warrants such action. In no case will the curving of grades result in a lower grade than was earned using the standard scale enumerated herein. Do not count on a curved grading scale for the course. Extra credit work will not be assigned, put your efforts into assigned work.
Lecture Points:
Exam 1, 2, 3 (100 pts each) 300 pts
Quiz 1, 2, 3 (10 pts each) 30 pts
Total: 330 pts

Final Grade:
Lecture 330 pts A = 567-630 pts
Lab 300 pts B = 504-566 pts
Total 630 pts C = 441-503 pts
A = 378-440 pts
F = 377 and below

LECTURE:
No electronic devices may be used during any lectures, exams, quizzes, or laboratory quizzes unless specifically requested in advance by student services on the student’s behalf or approved by the instructor.

Lecture Quizzes, Bonus Quizzes and Assignments:
All assignments are to be done individually unless you are directed otherwise by the instructor; collaboration on quizzes or assignments unless directed to do so by the instructor will constitute plagiarism.

Late quizzes and assignments will not be accepted. A medical excuse, as defined in the university handbook, or a university approved absence is required to avoid zero points on missed quizzes or assignments. The excused absences must be on the official university list.
Unexcused absences during exams, quizzes or assignments will result in a score of zero points for that exam, quiz or assignment.
If another instructor wishes to request excusing a student from HORT 203 lecture or lab to attend field trips or other activities, approval must be requested in writing and approved by the HORT 203 instructor in advance of the activity. The activity must be on the official university list or approved by the HORT 203 instructor prior to the activity before the excuse will be considered valid.

Makeup Policy:
Makeup examinations or quizzes will be granted only for excused absences (prior approval of the instructor, excuse from the student health center, or verifiable medical doctor’s excuse if the student is out of town). Any exam that is excused in advance by the instructor for a valid conflict must be made up prior to the regularly scheduled examination.
Makeups for lecture exams missed due to illness or other unforeseen circumstance deemed acceptable as an excuse by the instructor must be scheduled within twenty four hours of the originally scheduled exam time. Failure to contact the instructor within this twenty four hour period with a valid medical excuse will result in a zero for that examination.

Attendance:
Due to the nature of the material it is strongly encouraged that students attend lectures. Cell phones should be turned off during lecture periods. If a person’s cell phone rings, they are expected to turn it off immediately or leave.
AGGIE HORTICULTURE ONLINE:
Aggie Horticulture (moodle) is available online from any computer having Internet client software (e.g., Internet Explorer or Firefox). Students use Aggie Horticulture as a tool for accessing electronic databases of horticultural information. Lectures and supporting information will be posted on the HORT 203 website. You are responsible for reviewing online material, which may be included on examinations.

You must log in to the moodle website to receive grades for this course.

TENTATIVE LECTURE SCHEDULE

INTRODUCTION
Syllabus, Course Website

TECHNIQUES OF FLORAL ART
Tools and Mechanics
Identification of Cut Flowers and Foliage
Care and Handling of Cut Flowers and Foliage
The Design Process
Containers
(Quiz #1 Assigned)

ELEMENTS OF FLORAL ART
Elements of Design
(Quiz #2 Assigned)
Elements of Design

EXAM 1

PRINCIPLES OF FLORAL ART
Principles of Floral Art

DESIGN STYLES
Traditional Design Styles
Advanced Design Styles
(Quiz #3 Assigned)
Advanced Design Techniques
Dish Gardens

EXAM 2

HISTORY OF FLORAL DESIGN
Ancient History
European History
Eastern (Oriental) World History
American History

EXAM 3
Americans with Disabilities Act (ADA) Policy Statement:
The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services, in Cain Hall, Room B118, or call 843-1637. For additional information visit http://disability.tamu.edu.

AGGIE CODE OF HONOR
Cheating and Plagiarism:
"An Aggie Does Not Lie, Cheat or Steal or Tolerate Those Who Do." Cheating in any form during quizzes, take-home assignments, or exams, will result in a zero for that examination and possible other disciplinary actions per current TAMU Student Rules. Students observed giving or receiving answers during a quiz, exam, or assignment will receive a zero on that examination instrument. In the event of a repeat offense, an F will be assigned for the course. Copying or plagiarism (including failure to cite sources) on the assignments will result in a zero for the assignment. Cheating and plagiarism defrauds the instructor and fellow students, is a violation of the TAMU honor code, and will not be tolerated. All infractions will be reported via the Aggie Honor Code system (http://www.tamu.edu/aggiehonor/) and may result in more severe disciplinary actions than outlined above. Resources for students to clarify what is cheating plagiarism, and academic dishonesty can be accessed on the web at http://www.tamu.edu/aggiehonor/Student%20Resources/studentresources.html.

Suggested Inclusions from Speaker of the TAMU Faculty Senate:
Copyright / plagiarism statement:
"The handouts used in this course are copyrighted. By "handouts", I mean all materials generated for this class, which include but are not limited to syllabi, quizzes, exams, lab problems, in-class materials, review sheets, websites, and additional problem sets. Because these materials are copyrighted, you do not have the right to copy the handouts, unless I expressly grant permission. As commonly defined, plagiarism consists of passing off as one's own the ideas, words, writings, etc., which belong to another. In accordance with this definition, you are committing plagiarism if you copy the work of another person and turn it in as your own, even if you should have the permission of that person. Plagiarism is one of the worst academic sins, for the plagiarist destroys the trust among colleagues without which research cannot be safely communicated. If you have any questions regarding plagiarism, please consult the latest issue of the Texas A&M University Student Rules, under the section "Scholastic Dishonesty" http://www.tamu.edu/aggiehonor/acadmisconduct.htm.

Hazardous Materials Statement
Do not perform any procedure until all risks are understood and all actions can be performed in a safe, informed manner. When in doubt, ask for help. Hazards in the Hort 203 laboratory include:
 The use of sharp instruments in lab is required, and students should exercise caution.
 The best way to avoid injury is to always proceed slowly.
PORTFOLIO
Points: 100
The final product must be neat, professional appearing, and bound together (not turned in as loose sheets of paper). You can use a scrapbook, 3 ring binder, journal, etc. You must include proper reference throughout if anything is not your own original work. This product should be treated as a representation of yourself to a potential client/employer. (10 pts.)

Apple Cover Page (5 pts.)
Your “About Me” page. Images and/or words that represent you, your interests, your inspirations, etc. Be creative!

Apple Color Wheel (10 pts.)
Create a labeled color wheel (do not print off the internet) which includes at least the primary and secondary colors.

Apple Elements and Principles (35 pts.)
Do some research! The Elements and Principles will be given to you in lab.
○ Find an image that represents each of the E’s and P’s (a different image for each).
○ Explain how your image demonstrates the E or P as it is used in floral design.
○ This means that you need to include more than a definition!
○ Images do not have to be floral designs, but they must successfully demonstrate the respective element/principle.

Apple Design Evaluations (30 pts.)
Include: Clearly labeled color photo of each design.
Materials List
Self-Critique. When critiquing your design, explain what elements and principles were discussed in relation to the design and how your design exhibits the elements/principles properly or how it could be improved.

○ Small Round
○ Symmetrical Triangle
○ Asymmetrical Triangle
○ Crescent
○ Vegetative
○ Potted Plants/Ribbons & Bows
○ Hand-tied Bouquet
○ Corsage
○ Vertical
○ Horizontal

Apple Final Design (5 pts.)
Include: Photo & Materials List
Critique. What elements and principles of design were involved in the planning of your final design? Were you pleased with the outcome of your project? Does your final design represent the theme in the way you intended?

Apple References (5 pts.)
All images and text which are not your own photography or original work must be referenced. You must include all magazine names, photographer names, web addresses, etc.
Team Project: Final Design & Presentation
Group Name: ____________________

Your group (3 members) will create an event concept and final design based on a theme:

Team Members:
NAME E-MAIL

Part I (20 pts.)
Choose a Theme.
Create an Event.
 Where is the event located?
 How many people will attend the event?
 What is the layout of the event?
 How will your theme be conveyed at the event?
 Colors
 Room Decorations
 Floral Design
 Where will your design be placed?
Create a Visual Representation.
 Poster board

Part II (20 pts.)
Plan a Design.
 Flower Choice
 Stem Count
 Mechanics, Container, Accessories
Color Sketch of Final Design. (Include on poster board.)
Construct your Design.
 All group members must participate.

Part III (10 pts.)
In lab, present your poster board and design to the class. Explain how they represent the theme.
Explain your group’s design process.
Discuss any challenges that you encountered.
Team Member Evaluations.

You may not copy any of the designs used in class. Your project must be based on research outside of lab material.
FLORAL DESIGN LAB – HORT 203
Fall 2013 Syllabus

INSTRUCTOR:
Dr. Jayne Zajicek
Section 503
HFSB 422
j.zajicek@tamu.edu

Office Hours by appointment

GRADES:
Lecture 330 pts
Lab 300 pts
Total: 630 pts

A = 567-630 pts
B = 504-566 pts
C = 441-503 pts
D = 378-440 pts
F = 377 and below

Lab Points:
- Weekly Designs 50 pts
- Flower ID Quizzes 45 pts
- Flower ID Final 55 pts
- Portfolio 100 pts
- Team Project/Final Design 50 pts
- Total Points 300 pts

Weekly Designs:
Each week you will create the design demonstrated in class and review it with your lab instructor. You are responsible for recording information related to the design as demonstrated and explained by your instructor.

Flower Identification:
You will learn new flowers each lab session. The common name, scientific name, and flower type will be given to you each week. You will have weekly quizzes on these flowers and a Flower Identification Final on April 9-10. You must spell them correctly to receive full credit.

Portfolio:
Your portfolio will include photographs of your designs, design evaluations, various semester assignments, and your final design project.

Team Project/Final Design:
You will choose a design team of 3 members. Your team will develop an event concept that includes a final design project based on a theme given in class. You will meet with your team outside of lab time to fully develop your team’s ideas. You will present your plan to your TA at various stages throughout the semester, including color sketches and a materials list.

Attendance:
Due to the nature of the material it is strongly encouraged that students attend their designated lab.

CLEAN-UP POLICY:
You are responsible for cleaning up your work area before leaving the lab. Your TA will not critique your design until you have done the following:
- return unused flowers and foliage to proper buckets
- clear the table and floor where you worked
- put your tools, etc. away

Inadequate clean-up may result in deduction of points.

HAZARDOUS MATERIALS STATEMENT:
Do not perform any procedure until all risks are understood and all actions can be performed in a safe, informed manner. When in doubt, ask for help.
• Hazards in the Hort 203 laboratory include:
 o Chemicals
 ▪ cleaning solutions (all Labs)
 ▪ floral preservatives (all Labs)
 ▪ spray paint (all Labs) will be used in the ventilated spray booth only. Report to the instructor if the ventilation in the booth is malfunctioning.
 ▪ Chemicals will be handled with gloves when necessary, and with protective clothing when appropriate. Students will be strictly monitored. Any improper exposure to chemicals should be reported to the instructor immediately.
 o Mechanical Hazards (all Labs)
 ▪ The use of sharp instruments in lab is required, and students should exercise caution. The best way to avoid injury is to proceed slowly and follow instructions. When in doubt, ask for help.
 ▪ Hot Glue Guns should be used with caution. Hot glue or the heated gun element can cause severe burns. Report to instructor immediately if injured.

AMERICANS WITH DISABILITIES ACT (ADA) POLICY STATEMENT
The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services, in Cain Hall, Room B118 or call 845-1637. For additional information visit http://disability.tamu.edu.

AGGIE CODE OF HONOR
"Aggies do not lie, cheat, or steal nor do they tolerate those who do." Students are expected to attend all classes, complete assignments on time, and participate fully in class discussions and group projects. Violations will be handled in accordance with the Texas A&M University Regulations governing academic integrity.

COPYRIGHTS
Please note that all handouts and supplements used in this course are copyrighted. This includes all materials generated for this class, including but not limited to syllabi, exams, in-class materials, review sheets, and lecture outlines. Materials may be downloaded or photocopied for personal use only, and may not be given or sold to other individuals.

SCHOLASTIC DISHONESTY
As commonly defined, plagiarism consists of passing off as one’s own ideas, work, writings, etc., which belong to another. In accordance with this definition, you are committing plagiarism if you copy the work of another person and turn it in as your own, even if you should have the permission of that person. Plagiarism is one of the worst academic sins, for the plagiarist destroys the trust among colleagues without which research cannot be safely communicated. If you have questions regarding plagiarism, please consult the latest issue of the Texas A&M University Student Rules, under the section "Scholastic Dishonesty." http://aggiehonor.tamu.edu/
LAB SCHEDULE

Introductory Lab & Small Round

Symmetrical Triangle

Asymmetrical Triangle

Cover Page Due

Crescent

Vegetative

Potted Plants/Ribbons & Bows

Color Wheel Due

Hand-tied Bouquet

Corsage

Horizontal

Elements & Principles Due

Vertical

Flower ID Review

Flower ID Final

Materials List Due

Final Design Construction

Team Project Presentation

Portfolio Due
Texas A&M University
Core Curriculum

Initial Request for a lower division course included in the current Core Curriculum
to be considered for the Fall 2014 Core Curriculum

1. This request is submitted by (department name): English

2. Course prefix and number: ENGL 232

3. Texas Common Course Number: 2323

4. Complete course title: Survey of British Literature II

5. Semester credit hours: 03 SCH

6. This request is for consideration in the following Foundational Component Area:
 - Communication
 - Mathematics
 - Life and Physical Sciences
 - Language, Philosophy and Culture
 - Creative Arts
 - American History
 - Government/Political Science
 - Social and Behavioral Sciences

7. This course should also be considered for International and Cultural Diversity (ICD) designation:
 - Yes
 - No

8. How frequently will the class be offered? every semester

9. Number of class sections per semester: 2 - 3

10. Number of students per semester: 60 - 150

11. Historic annual enrollment for the last three years: 211 205 156

This completed form must be attached to a course syllabus that sufficiently and specifically details the appropriate core objectives through multiple lectures, outside activities, assignments, etc. Representative from department submitting request should be in attendance when considered by the Core Curriculum Council.

13. Submitted by:

 [Signature]

 Course Instructor

 Date

 [Date]

 Approvals:

 [Signature]

 Department Head

 Date

 [Date]

 College Dean/Designee

 Date

For additional information regarding core curriculum, visit the Texas Higher Education Coordinating Board website at www.thecb.state.tx.us/corecurriculum2014

See form instructions for submission/approval process.
Texas A&M University

Core Curriculum

Initial Request for a Course Addition to the Fall 2014 Core Curriculum

Foundational Component Area: Language, Philosophy and Culture

In the box below, describe how this course meets the Foundational Component Area description for Language, Philosophy and Culture. Courses in this category focus on how ideas, values, beliefs, and other aspects of culture express and affect human experience. Courses involve the exploration of ideas that foster aesthetic and intellectual creation in order to understand the human condition across cultures.

How does the proposed course specifically address the Foundational Component Area definition above?

English 232 is a survey of British writings (poetry, novels, drama, and non-fiction prose) from the late-eighteenth century to the present. The survey nature of the course will permit us to think about these writings in relation to significant literary themes and movements in the late-eighteenth, nineteenth, twentieth and twenty-first centuries, and to consider these texts in relation to the social and intellectual contexts in which they were written and in which they were first read. This course will ultimately reveal how wider social forces shape the philosophical outlooks and aesthetic sensibilities from the late 18th century to the present, and ultimately, help students develop an appreciation for what the study of literatures of different societies and eras can teach us about ourselves and our shared humanity.

Core Objectives

Describe how the proposed course develops the required core objectives below by indicating how each learning objective will be addressed, what specific strategies will be used for each objective and how student learning of each objective will be evaluated.

Critical Thinking (to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information):

Critical Thinking Skills (CTS): The course will enhance critical thinking skills through consistent reading and class discussion of key ideas in various literary traditions in British literature and its colonies from the late 18th century to the present. The evaluation of critical thinking skills will be based on exams and class participation and may include evaluation of written work. Exams will be designed to allow students to demonstrate their ability to evaluate and synthesize key ideas from the assigned reading. Class room discussion will focus on helping students better understand the nuances and complexities of British literary works in Britain and its colonies.

Communication (to include effective development, interpretation and expression of ideas through written, oral and visual communication):

Communication Skills (CS): The course will enhance communication skills through small and large group discussion and writing about ideas, issues, questions, and themes central to course reading. The evaluation of communication skills will be based on class participation in discussions and on exams and may include evaluation of written assignments. Students will demonstrate an understanding of British literary works in Britain and its colonies from the late 18th century to the present through exams in which they will be expected to effectively convey key ideas from the course succinctly and clearly, and through class room discussion in which students will learn how to express questions and thoughts about the subtleties of each text under examination.
Texas A&M University

Core Curriculum

Initial Request for a Course Addition to the Fall 2014 Core Curriculum

Social Responsibility (to include intercultural competence, knowledge of civic responsibility, and the ability to engage effectively in regional, national, and global communities):

Social Responsibility (SR): The course will enhance social responsibility by providing students with a cross cultural understanding of how history and broader social forces have shaped literary traditions in Britain and its colonies from the late 18 century to the present. The evaluation of social responsibility will be based upon an end-of-the-semester short writing assignment in which students will demonstrate how key insights from the course have helped broaden their understanding of the way differing histories, cultures and philosophical outlooks shape the development of a literary tradition, including their own.

Personal Responsibility (to include the ability to connect choices, actions and consequences to ethical decision-making):

Personal Responsibility (FR): The course will teach personal responsibility by enhancing students' understanding of how to ethically use sources to craft a persuasive argument/answer to an essay question. The evaluation of personal responsibility will be based upon an assignment in which students will be expected to ethically cite another person's work in crafting an answer or essay response to a specific question. The instructor will offer concrete examples of how to paraphrase ideas and integrate in-text citations in order to construct a persuasive argument.

Please be aware that instructors should be prepared to submit samples/examples of student work as part of the future course recertification process.
Dr. Mary Ann O'Farrell
Office hours: Th 12:00-3:00; and by appointment
Office: 5XX LAAH
Office phone: 845-8313
E-mail: maof@tamu.edu

Teaching assistant: XXX
Office hours: TBA

English 232-501: Survey of British Literature II
T-Th 3:55-5:10, 260 HECC

Catalog Course Description: ENGL 232 Survey of English Literature II. Credit 3. Literary works from the late 18th century to the 21st century by authors in Great Britain and its colonies.

Prerequisite: None.

Course description
English 232 is a survey of British writings (poetry, novels, drama, and non-fiction prose) from the late-eighteenth century to the present. The survey nature of the course will permit us to think about these writings in relation to significant literary themes and movements in the late-eighteenth, nineteenth, twentieth and twenty-first centuries, and to consider these texts in relation to the social and intellectual contexts in which they were written and in which they were first read.

Learning Outcomes
The course is designed to help students to do the following:

1. To become familiar with authors, texts, and issues important to the study of British literature from the late eighteenth century to the present.

2. To read these texts in relation to the social and cultural contexts in which they were written and read.

3. To develop a sense of the tradition of British literature, including how that tradition builds upon texts speaking to one another.

4. To develop their knowledge of the goals and strategies of critical/analytical reading and writing, and to be able to articulate critical and interpretive responses to literary works in speech and in writing.
Core Curriculum Objectives:

The course addresses the Foundational Component Area in the following four ways.

Critical Thinking Skills (CTS): The course will enhance critical thinking skills through consistent reading and class discussion of key ideas in various literary traditions in British literature and its colonies from the late 18 century to the present.

Communication Skills (CS): The course will enhance communication skills through small and large group discussion and writing about ideas, issues, questions, and themes central to course reading.

Personal Responsibility (PR): The course will teach personal responsibility by enhancing students' understanding of how to ethically use sources to craft a persuasive argument/answer to an essay question.

Social Responsibility (SR): The course will enhance social responsibility by providing students with a cross cultural understanding of how history and broader social forces have shaped literary traditions in Britain and its colonies from the early 18 century to the present.

Core Evaluation:

CTS: The evaluation of critical thinking skills will be based on exams and class participation and may include evaluation of written work. Exams will be designed to allow students to demonstrate their ability to evaluate and synthesize key ideas from the assigned reading. Class room discussion will focus on helping students better understand the nuances and complexities of British literary works in Britain and its colonies.

CS: The evaluation of communication skills will be based on class participation in discussions and on exams and may include evaluation of written assignments. Students will demonstrate an understanding of British literary works in Britain and its colonies through exams in which they will be expected to effectively convey key ideas from the course succinctly and clearly, and through class room discussion in which students will learn how to express questions and thoughts about the subtleties of each text under examination.

SR: The evaluation of social responsibility will be based upon an end-of-the-semester short writing assignment in which students will demonstrate how key insights from the course have helped broaden their understanding of the way differing histories, cultures and philosophical outlooks shape the development of a literary tradition, including their own.

PR: The evaluation of personal responsibility will be based upon an assignment in which
students will be expected to ethically cite another person's work in crafting an answer or essay response to a specific question. The instructor will offer concrete examples of how to paraphrase ideas and integrate in-text citations in order to construct a persuasive argument.

Grading
A=90-100
B=80-89
C=70-79
D=60-69
F=0-59

Exams

The mid-terms will consist of a) short-answer questions and b) passage identifications that require brief essays. On the second mid-term students will also be asked to answer a question that tests their knowledge of how to ethically cite a source to build a persuasive argument. The final will consist of: a) short-answer questions, b) passage identifications that require brief essays, and c) one essay question that will ask the student to think comprehensively about works we have read and talked about this semester. On the final students will also have to answer a short question in which they will have to demonstrate how key insights from the course have helped broaden their understanding of the way differing histories, cultures and philosophical outlooks shape the development of a literary tradition, including their own.

Online posts

Several times during the semester, you will be asked to respond to our readings for class. These responses must be posted on our course Moodle site for your classmates to read. The posts will help you develop your skills as a critical reader and as a writer, and they may sometimes help direct our discussion. Though you may be tempted to think of these as informal because they are short (100-200 words) and online, I am asking you to make thoughtful and intelligent observations about the text you are considering in clearly written, edited, and proofread prose.

Attendance & Participation

Attendance and participation will be based on constant attendance and fidelity to reading and other assignments; quizzes; in-class assignments; contribution to discussion. The TA will take attendance. All students are expected to complete readings before the class period in which they will be discussed. University rules related to excused and unexcused absences are located on-line at http://student-rules.amu.edu/rule07.
Americans with Disabilities Act (ADA) Policy Statement

The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services, in Cain Hall, Room B118, or call 845-1637. For additional information visit http://disability.tamu.edu.

Academic Integrity Statement and Policy

"An Aggie does not lie, cheat or steal, or tolerate those who do." For additional information, please visit: http://aggiehonor.tamu.edu

Grade will be determined as follows:

- mid-term examination 1 25%
- mid-term examination 2 25%
- final examination 25%
- online posts as assigned 20%
- attendance & participation (including discussion, keeping up with the reading, attendance, quizzes) 5%

Required Texts
Mary Shelley. Frankenstein. 1818 text. Oxford UP.

Our course will also use the course management system Moodle. Find your way here <http://moodle.english.tamu.edu/> to register for our course’s Moodle site before class. Our course enrollment key is “coffee” (without the quotation marks).

Schedule of readings. The syllabus is subject to verbal or written revision.

Week 1
T Introduction
Week 2
T
Frankenstein, the remainder of Vol. I, Vol. II

Th
Frankenstein, Vol. III

Week 3
T
W. Wordsworth, “Lines written a few miles above Tintern Abbey” (2A: 429-33)
Romantics introduction in anthology (2A: 7-33)

Th
Tintern Abbey
Selections from the Preface to *Lyrical Ballads* (2A: 433-445)

Week 4
T
Barbauld, “Washing Day” (2A: 70-72); “To a Little Invisible Being” (2A: 68-69)
D. Wordsworth, “Thoughts on My Sick-bed” (2A: 602-03)
W. Wordsworth, “We are Seven” (2A: 416-18); “Ode: Intimations of Immortality” (553-58)

Th

Week 5
T
Mid-term examination on the Romantic period

Th
Wilkie Collins, selection from *The Woman in White* (on Moodle)
Introduction to The Victorian Age (2B: 1049-73)
Tennyson, “Ulysses,” “Tithonus” (2B: 1189-93)

Week 6
T
Robert Browning, “Porphyria’s Lover,” “Soliloquy of the Spanish Cloister,” “My Last Duchess” (2B: 1325-29), “Andrea del Sarto” (2B: 1358-64)

Th
Wellstonecraft, from *A Vindication of the Rights of Woman* (2A: 304-26)
Ruskin, from *Sesame and Lilies* (2B: 1544-47)
Norton, from “A Letter to the Queen” (2B: 1533-35)
Elizabeth Barrett Browning, selection from Aurora Leigh (2B: 1158-62)

Week 7
T Charles Dickens, A Christmas Carol (2B: 1376ff.; Staves 1-2)
Friedrich Engels, selection from The Condition of the Working Class in England in 1844 (2B: 1101-08)

Th A Christmas Carol (Staves 3-5)
Henry Mayhew, selection from London Labour and the London Poor (2B: 1108-13)

Week 8
T Doyle, “A Scandal in Bohemia” (2B: 1467ff.) On this day, the instructor will also discuss concrete examples of how to paraphrase ideas and integrate in-text citations in order to construct a persuasive argument. The student will be tested on this material on the next exam.

Th Christina Rossetti, “In an Artist’s Studio” (2B: 1647), “Goblin Market” (1650ff.)
The Pre-Raphaelite Brotherhood (review paintings reproduced in the front of 2B)

Spring break

Week 9
T Wilde, The Importance of Being Earnest (2B: 1830ff.)

Th Mid-term examination on the Victorian age

Week 10
T Joyce, “The Dead” (2C: 2229ff.)
Introduction to “The Twentieth Century and Beyond” (2C: 1923-48)

Th Virginia Woolf, Mrs. Dalloway (2C: 2338-2390)

Week 11
T Mrs. Dalloway (2390-2437)

Th Mrs. Dalloway continued.
Week 12
T Advertisements (on Moodle)
 Ngugi, from *Decolonizing the Mind* (2C: 2774-77)
 Gwyneth Lewis, "Mother Tongue" (2C: 2806)
Th Salman Rushdie, "Chekhov and Zulu" (2C: 2749ff.)

Week 13
T Zadie Smith, "Martha, Martha" (2C: 2861ff)
Th Kazuo Ishiguro, *The Remains of the Day* (1st half)

Week 14
T *The Remains of the Day* (2nd half)
Th *The Remains of the Day*

Final examination on the 20th-century and contemporary readings, with one comprehensive essay question. The final exam will also include a short writing assignment in which students will demonstrate how key insights from the course have helped broaden their understanding of the way differing histories, cultures and philosophical outlooks shape the development of a literary tradition, including their own. TBA
March 5, 2013

To: Core Curriculum Council

From: Heather H. Wilkinson, Associate Professor PLPM/BESC Degree Program

Re: Cover Letter for Revisions for the BESC 201 application to remain in the core curriculum as a course within the Life and Physical Sciences Foundational Component Area

In response to your comments at the March 4, 2013 public review of BESC 201 as a core curriculum course within the Foundational Component Area: Life and Physical Sciences I have made the two minor changes you specifically requested, as well as, providing the additional information necessary to make our plans explicitly clear no matter which instructor teaches the course. We feel this has greatly improved the document for the purposes of establishing standard operating procedures. For the sake of clarity below are all the changes made relative to the original submission:

- The syllabus was changed to include 14 weeks instead of 15.
- In the FUNCTIONAL COMPONENT AREA - To more explicitly reference our intention to include the scientific method, as well as, to provide a more elaborate description the following was added:
 - "Through interaction with media, readings, lectures and class discussion students review and evaluate data and observable facts related to science-based studies of the environment. A major theme will be to examine environmental issues in the context of these studies, with particular emphasis on the role of the scientific method in the study. Further, students are expected to provide written explanations of how exposure to the data and the conclusions from studies relates to their own worldview."
- In the CRITICAL THINKING objective description - To further elaborate the critical thinking aspects of each of the major assignments (i.e. not just quizzes and tests) the following was added:
 - "Prompts within the journal assignments will be designed to assess how students integrate and synthesize their understanding of data, course concepts, and scientific principles to bolster, modify and/or create their own worldviews. Further, creative thinking will be assessed during evaluation of the group podcast assignment."
- In the COMMUNICATION objective description – To further define the oral, written and visual aspects of the assignments the following new text was added:
 - "This [podcast]assignment requires students to practice oral, written and visual communication skills. Effective group work will require oral negotiation among team members and the podcasts themselves will require effective narration. Students will work together to create written scripts for the narration and a written transcript for the podcast will be submitted with the assignment. The podcasts will be evaluated based on effective use of visual communication to include: graphs, photographs, animation, video clips or simulations as appropriate. Students will be expected incorporate data in their presentations to effectively convey the issues specific to the country."
 - "... (supported by data rich specific examples) in the course. Thus, grading will be based on both effective written and visual communication (e.g. graphs, tables, figures) and also evidence of reflection and connection."
"Student participation in class discussions during face-to-face meetings will constitute oral communication. To deal with issues of class size and introvert/extravert inherent differences these discussions will be staged in a variety of different contexts (e.g. spontaneous responses to questions during lecture, think-pair-share arrangements, small groups with prompts provided prior to class) to provide ample opportunity for students to perform. When topics engender a great deal of discussion there is also the possibility of providing a forum within the eCampus discussion area, which many students find satisfying instead of just dropping the topic due to the end of the lecture period. Participation in class and class attendance are 10% of the grade. An attendance sign-in sheet will be distributed each day of class. Each unexcused absence results in a deduction of 0.5 points up to a total of 5 points associated with attendance. Participation will involve subjective assessment by the instructor of the degree to which students contribute meaningfully to class discussion as well as evidence of active listening."

- In the **EMPIRICAL AND QUANTITATIVE SKILLS** objective description – To further define the oral, written and visual aspects of the assignments the following new text was added:

 o "In instances where simple calculations are appropriate for a concept these will be included on quizzes and exams."

 o "... Thus grading will be based on both effective communication (see communication) and also evidence of reflection and connection (as defined in the AACU VALUE rubric integrative learning: www.aacu.org/rubrics/pdf/integrativelearning.pdf). It is important to note, students will be prompted to support their journal entries with appropriate reference to data and observable facts (e.g. graphs, figures, specific conclusions from studies, etc) and the degree of effectiveness of this will be part of the journal assessment."

- In the **TEAMWORK** objective description: There are no changes.
Foundational Component Area: Life and Physical Sciences

In the box below, describe how this course meets the Foundational Component Area description for Life and Physical Sciences. Courses in this category focus on describing, explaining, and predicting natural phenomena using the scientific method. Courses involve the understanding of interactions among natural phenomena and the implications of scientific principles on the physical world and on human experiences.

How does the proposed course specifically address the Foundational Component Area definition above?

BESC 201: Introduction to Bioenvironmental Sciences surveys environmental science highlighting the roles and effects of biological components, including most significantly humans. A further emphasis is placed on scientific literacy when interpreting all sides of environmental issues.

Through interaction with media, readings, lectures and class discussion students review and evaluate data and observable facts related to science-based studies of the environment. A major theme will be to examine environmental issues in the context of these studies, with particular emphasis on the role of the scientific method in the study. Further, students are expected to provide written explanations of how exposure to the data and the conclusions from studies relates to their own worldview.

Core Objectives

Describe how the proposed course develops the required core objectives below by indicating how each learning objective will be addressed, what specific strategies will be used for each objective and how student learning of each objective will be evaluated.

Critical Thinking (to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information):

Learning Outcomes:
Apply information learned through readings and other media posted within the learning management system
Comprehend the interdisciplinary concepts integral to environmental science
Analyze current environmental issues and evaluate potential solutions
Assess the costs and benefits of conservation vs. remediation or technological solutions

Assessment:
Students will take weekly online quizzes to assess their comprehension of the reading and other media. Further there will be unit exams given in class (multiple choice). Prompts within the journal assignments will be designed to assess how students integrate and synthesize their understanding of data, course concepts, and scientific principles to bolster, modify and/or create their own worldviews. Further, creative thinking will be assessed during evaluation of the group podcast assignment.

Communication (to include effective development, interpretation and expression of ideas through written, oral and visual communication):

Learning Outcomes:
Relate the features of human populations to different types of environmental degradation
Recognize the impact of globalization on the environment
Recognize the ecological footprints left by different peoples of the Earth
Participate in class discussions and actively listen to student presentations
Texas A&M University

Core Curriculum

Initial Request for a Course Addition to the Fall 2014 Core Curriculum

Work effectively in a group to create a presentation about an assigned country
Recognize the variety of worldviews associated with the environment
Excavate and describe your own worldview and speculate about how and why you formed it

Assessment:
Students will work in groups to create podcast presentations that highlight the demographic and environmental issues of a country. This assignment requires students to practice oral, written and visual communication skills. Effective group work will require oral negotiation among team members and the podcasts themselves will require effective narration. Students will work together to create written scripts for the narration and a written transcript for the podcast will be submitted with the assignment. The podcasts will be evaluated based on effective use of visual communication to include: graphs, photographs, animation, video clips or simulations as appropriate. Students will be expected incorporate data in their presentations to effectively convey the issues specific to the country. Assessment of the podcast assignment includes the quality of the end product (based on a rubric provided, used by both the instructor and members of the class via peer review) and also the quality of individual participation in its creation (based on within group reflection on peer performance).

Students will respond to journaling prompts within the eCampus journal tool. This assessment is designed to encourage students to reflect on the relationship between their worldview and the scientific principles (supported by data rich specific examples) in the course. Thus, grading will be based on both effective written and visual communication (e.g. graphs, tables, figures) and also evidence of reflection and connection.

Student participation in class discussions during face-to-face meetings will constitute oral communication. To deal with issues of class size and intraverter/extervert inherent differences these discussions will be staged in a variety of different contexts (e.g. spontaneous responses to questions during lecture, think-pair-share arrangements, small groups with prompts provided prior to class) to provide ample opportunity for students to perform. When topics engender a great deal of discussion there is also the possibility of providing a forum within the eCampus discussion area, which many students find satisfying instead of just dropping the topic due to the end of the lecture period. Participation in class and class attendance are 10% of the grade. An attendance sign-in sheet will be distributed each day of class. Each unexcused absence results in a deduction of 0.5 points up to a total of 5 points associated with attendance. Participation will involve subjective assessment by the instructor of the degree to which students contribute meaningfully to class discussion as well as evidence of active listening.

Empirical and Quantitative Skills (to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions):

Learning Outcomes:
Apply information learned through readings and other media
Analyze current environmental issues and evaluate potential solutions
Assess the costs and benefits of conservation vs. remediation or technological solutions

Assessment:
Students will take weekly online quizzes and also in class exams to assess their ability to apply information to make informed conclusions. In instances where simple calculations are appropriate for a concept these will be included on quizzes and exams.

Students will respond to journal prompts within the eCampus journal tool. This assessment is designed to encourage students to reflect on the relationship between their worldview and the concepts in the course. Thus grading will be based on both effective communication (see communication) and also evidence of reflection and connection (as defined in the AACU VALUE rubric integrative learning: www.aacu.org/valu/rubrics/pdf/integrativelearning.pdf). It is
Texas A&M University

Core Curriculum

Initial Request for a Course Addition to the Fall 2014 Core Curriculum

Important to note, students will be prompted to support their journal entries with appropriate reference to data and observable facts (e.g., graphs, figures, specific conclusions from studies, etc.) and the degree of effectiveness of this will be part of the journal assessment.

Teamwork (to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal):

Learning Outcome:
Work effectively in a group to create a presentation about an assigned country

Assessment:
Students will work in groups to create podcast presentations that highlight the demographic and environmental issues of a country. Assessment of this includes the quality of the end product (based on a rubric provided, used by both the instructor and members of the class via peer review) and also the quality of individual participation in its creation (based on within group reflection on peer performance).

The assessment of teamwork will be most evidenced by within group feedback provided to the instructor and to the students.

Please be aware that instructors should be prepared to submit samples/examples of student work as part of the future course recertification process.
Syllabus
BESC 201 Introduction to Bioenvironmental Sciences
Spring Semester, 2014

Time: MWF 11:30-12:20
Location: TBA
Instructor: Dr. Libo Shan
Assistant Professor, Plant Molecular Biology
132A Borlaug
979-845-8818
lishan@temu.edu
Office Hours: 9:30 - 11 M&W; or by appointment

Description
Introduction Bioenvironmental Sciences (3cr) provides students with a broad survey of environmental science with an emphasis on scientific literacy, current events, global and international issues, and historic context.

Prerequisites
None

Textbook

Essential Environment: The Science Behind the Stories, Fourth Edition
Author(s): Jay Withgott; Matthew Laposata

Learning Outcomes
- Apply information learned through readings and other media posted within the learning management system.
- Comprehend interdisciplinary (e.g. agricultural science, biology, chemistry, ecology, economics, geology, history, policy, etc) concepts integral to environmental science.
- Analyze current environmental issues and evaluate potential solutions.
- Relate the features of human populations to different types of environmental degradation.
- Assess the costs/benefits of conservation vs. remediation or technological solutions.
- Recognize the impact of globalization on the environment.
- Recognize the ecological footprints left by different peoples of the Earth.
- Participate in class discussions and actively listen to student presentations.
- Work effectively in a group to create an presentation about an assigned country.
- Recognize the variety of worldviews associated with the environment.
- Excavate and describe your own worldview and speculate about how and why you formed it.
USING eCampus

1. Sign in to Blackboard Learn at http://eCampus.tamu.edu by following the link to NETID Login.
2. Contact your instructor for any technical assistance you may need with this course. Help Desk Central cannot assist in resolving technical issues with Blackboard Learn.
4. A community for all students participating in eCampus is accessible from Blackboard Learn. You will click on Community tab located at the top of the screen. The student community is called eCampus Student Community. This space is for students to discuss their experience and to seek assistance, if needed from other students. The space is not moderated by any instructor. Questions to instructors should not be posted here.

Reading quiz and Exam Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Reading</th>
<th>Reading Assessment</th>
<th>Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-Jan-14</td>
<td>Chapter 1. Science and Sustainability: An Introduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to Environmental Science</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>20-Jan-14</td>
<td>Chapter 2. Environmental Systems: Chemistry, Energy,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Ecosystems</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>27-Jan-14</td>
<td>Chapter 3. Evolution, Biodiversity, and Population</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ecology</td>
<td>3</td>
<td>UNIT 1</td>
</tr>
<tr>
<td>3-Feb-14</td>
<td>Chapter 4. Species Interactions and Community Ecology</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10-Feb-14</td>
<td>Chapter 5. Environmental Economics and Environmental</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Policy</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>17-Feb-14</td>
<td>Chapter 6. Human Population</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>24-Feb-14</td>
<td>Chapter 10. Environmental Health and Toxicology</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>UNIT 2</td>
</tr>
<tr>
<td>3-Mar-14</td>
<td>Chapter 16. Managing Our Waste</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>10-Mar-14</td>
<td>SPRING BREAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-Mar-14</td>
<td>Chapter 7. Soil, Agriculture, and the Future of Food</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-Mar-14</td>
<td>Chapter 8. Biodiversity and Conservation Biology</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chapter 9. Forests, Forest Management, and Protected</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Areas</td>
<td>10</td>
<td>UNIT 3</td>
</tr>
<tr>
<td>31-Mar-14</td>
<td>Chapter 12. Fresh Water, Oceans, and Coasts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>7-Apr-14</td>
<td>Chapter 13. Atmospheric Science and Air Pollution</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chapter 14. Global Climate Change</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-Apr-14</td>
<td>Chapter 11. Geology, Minerals, and Mining</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-Apr-14</td>
<td>Chapter 15. Nonrenewable Energy Sources, Their Impacts,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Energy Conservation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28-Apr-14</td>
<td>Course Wrap-up</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The reading assessments will be posted each week at noon on Wednesday and be available for 24 hours before they close at noon on Thursday.

** The unit exams will be given the last Friday of each unit.
Grading

There will be 15 online assessments via eCampus (LMS Blackboard) used to measure mastery of concepts in reading materials. In addition the assessments will serve as reviews for materials that will be on the unit exams. The 15 assessments will count for 30% of the overall grade (2.0 points each). The reading assessments will be posted each week at noon on Wednesday and be available for 24 hours before they close at noon on Thursday. There will be 1 hour to complete the quiz once you start it.

There will be four unit exams, each worth 10% of the course grade. The exams will be based on material from readings, posted resources and class discussions. One week prior to the exam a review will be posted to guide your studying. The unit exams will be given the last Friday of each unit. Make-up exams require evidence of an excuse absence (http://student-rules.tamu.edu/rule7.htm).

Attendance and Class Participation will account for 10% of the grade. An attendance sign-in sheet is distributed each day of class. Each unexcused absence is results in a deduction of 0.5 points up to a total of 5 points associated with attendance total. Participation will involve the subjective assessment by the instructor of degree to which you contribute meaningfully to class discussion as well as evidence of active listening.

Excavating your worldview (Journal reflections): At the beginning of each unit you will receive prompts that related to the upcoming course concepts and their relationship to a worldview. Throughout the unit as you learn you should think about these relationships and respond the prompts. Each journaling prompt will end at the end of the unit. Journal entries for each unit will count for 2.5 points each = 4 X 2.5=10 points total.

Group Presentations: You will work in groups of 6 to create a 4-5 minute podcast presentation that highlights the demographics and environmental issues of an assigned country. The presentations will be assessed based on a rubric provided via eCampus, to include some portion of the overall presentation grade based on peer-review by other students in the course and some portion of the individual student grade based on within group peer evaluation of your contribution.

<table>
<thead>
<tr>
<th>Reading Assessments</th>
<th>30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Exam I</td>
<td>10%</td>
</tr>
<tr>
<td>Unit Exam II</td>
<td>10%</td>
</tr>
<tr>
<td>Unit Exam III</td>
<td>10%</td>
</tr>
<tr>
<td>Unit Exam IV</td>
<td>10%</td>
</tr>
<tr>
<td>Attendance and Participation</td>
<td>10%</td>
</tr>
<tr>
<td>Journal Reflections</td>
<td>10%</td>
</tr>
<tr>
<td>Group Presentation</td>
<td>10%</td>
</tr>
</tbody>
</table>

Americans with Disabilities Act (ADA) Policy Statement
(ADA) is a federal antidiscrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact the Department of Student Life, Services for Students with Disabilities in Room B118 of Cain Hall or call 845-1637.

Academic Integrity Statement
Aggie Honor Code “An Aggie does not lie, cheat, or steal or tolerate those who do.”
Upon accepting admission to Texas A&M University, a student immediately assumes a commitment to uphold the Honor Code, to accept responsibility for learning and to follow the philosophy and rules of the Honor System. Students will be required to state their commitment on examinations, research papers, and other academic work. Ignorance of the rules does not exclude any member of the Texas A&M University community from the requirements or the processes of the Honor System. For additional information please visit: www.tamu.edu/aggiehonor/
Texas A&M University

Core Curriculum

Initial Request for a Course Addition to the Fall 2014 Core Curriculum

Foundational Component Area: Life and Physical Sciences

In the box below, describe how this course meets the Foundational Component Area description for Life and Physical Sciences. Courses in this category focus on describing, explaining, and predicting natural phenomena using the scientific method. Courses involve the understanding of interactions among natural phenomena and the implications of scientific principles on the physical world and on human experiences.

How does the proposed course specifically address the Foundational Component Area definition above?

Biology 101 is an introductory botany course that covers the anatomy, development, physiology, reproduction, genetics, evolution, and diversity of algae and non-vascular and vascular plants. The development of agriculture and its effects on human society are explored, as well as human manipulation of plants. Weekly laboratory exercises focus on using the scientific method to reinforce and further explore lecture topics.

Core Objectives

Describe how the proposed course develops the required core objectives below by indicating how each learning objective will be addressed, what specific strategies will be used for each objective and how student learning of each objective will be evaluated.

Critical Thinking (to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information):

The scientific method is the basis of both lecture and lab. Lectures present knowledge obtained from historical and current investigations and encourage students to consider ways in which this knowledge can be applied or furthered. Lecture exams assess students’ ability to analyze and think critically about information presented throughout the course. Laboratory exercises involve designing and performing experiments to test hypotheses and interpreting the data gathered. Detailed observation and comparison of organisms from single-celled algae to flowering plants, along with experiments with transgenic plants, contribute to an understanding of evolution and provide a framework for the discussion of emergent research in plant systematics and genetics. Lab assessments include lab reports, weekly quizzes, and a short research topic paper which is presented to the class.

Communication (to include effective development, interpretation and expression of ideas through written, oral and visual communication):

Lab reports and quizzes require written and graphic interpretation of experimental results via discussion, graphs, tables, charts, and drawings. Laboratory sessions include question and answer sessions to reinforce learning. The final lab project involves writing a presentation, delivering it in front of the lab section, and facilitating discussion.

Empirical and Quantitative Skills (to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions):

Lab exercises covering cell theory and division, plant development, heredity, enzymes, photosynthesis, respiration, protein synthesis, and transgenic plants involve the generation, analysis, and interpretation of exercise-specific data. Results are summarized in writing and/or tabular or graphic form for lab reports and quizzes. The plant diversity labs allow observation and analysis of variation in anatomy, physiology, and reproduction. Lab quizzes over the diversity labs emphasize recognition and analysis of features. Lectures and lecture exams invite the students to consider how research conclusions could be used to make decisions about land use, nutrition, transgenic plant development, etc.
Texas A&M University

Core Curriculum

Initial Request for a Course Addition to the Fall 2014 Core Curriculum

Teamwork (to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal):

The majority of the lab exercises require the students to work in groups to set up, run, and collect data on the experiments. Different groups or members of each group perform separate components of the lab exercise; the groups or group-members then interact to produce a set of group-compiled results. Each student subsequently uses the group-compiled results as the basis for his/her written lab assignment (in-class, homework or lab report). Teamwork is assessed by direct observation by the lab instructor and the assignment of appropriate participation points. During the interactive lab summaries students have the ability to consider different interpretations of the data and how these might yield different points of view.

Please be aware that instructors should be prepared to submit samples/examples of student work as part of the future course recertification process.
BIOLOGY 101 - BOTANY
GENERAL INFORMATION - Fall 2012

COURSE DESCRIPTION (4 credits): The origin of agriculture and its profound effect on the development of human society are integrated with classical information on plant anatomy, physiology and evolution together with contemporary information on gene structure, function, cloning and the ways in which transgenic plants are created and their importance in feeding the burgeoning world population. The course includes laboratory exercises that reinforce the lecture topics and a CD is available that contains the course material in PDF format.

COURSE OBJECTIVES: Students are expected to attend both lecture and lab where they will be introduced to the study of plant biology. Using plant models, students study the scientific method, the chemical basis of life, cell structure and biology, and the principles of genetics and evolution. Upon completion of the course, students will be able to recognize and classify the major plant groups. In addition they will be able to describe and discuss cell structure and function and the physiological processes of photosynthesis and respiration. The successful student will be able to discuss the relationships of the fundamental biochemical events of DNA replication, transcription and translation to cell division and gene expression. Students will be able to isolate DNA, setup PCR reactions and interpret gel electrophoresis results. Finally, they will be able to discuss the relevance of plants and scientific investigation to human society.

LECTURE- MWF 9:10-10 a.m., BSBE 115. A synopsis of lecture notes and overhead material is located at http://elearning.tamu.edu

Exam review sessions - 7:30 to 9:00 p.m.: Thursday Sept 20; Tuesday Oct 16; Thursday Nov 8 (all in BSBE 115). The review for the Final Exam (December 7) will be in the normal class time and place.

LABORATORY- All laboratory sections meet in Heldenfels 305. There are no makeup labs. If you miss lab for a university approved reason, you must notify your instructor within two class days and provide documentation within one week to be considered for a makeup assignment. See http://student-rules.tamu.edu section 7 for more information. Note: The Texas A&M University Explanatory Statement of Absence Form is NOT an acceptable excuse for this course.

LECTURE - Please refer to the class notes at http://elearning.tamu.edu for more information. If you miss an exam for a university approved reason you must contact Dr. Hall within 2 working days of the absence and show written evidence within 1 week to substantiate the absence was for an accepted reason. See http://student-rules.tamu.edu/ section 7. The Lower Division Biology Program DOES NOT accept the Texas A&M University Explanatory Statement of Absence Form as an excused absence. In order to make up an exam, you must obtain a signed makeup authorization from Dr. Hall and bring the form to Held 315. It is your responsibility to notify Dr. Hall of your absence, provide verification, and insure your name is on the list for the make-up exam. Make-up exams typically consist of essay and short answer questions and will NOT be scheduled without instructor permission.

All make-up exams will be in Heldenfels Hall, room 200 from 5:30-6:30 p.m. Make-up for Exam 1 will be on Oct. 4th, makeup for exam 2 will be Nov. 1, and makeup for Exam 3 will be Nov. 29. It is your responsibility to notify your instructor of your absence and to insure your name is on the sign-up list for the appropriate make-up exam. Make-up exams typically consist of essay and short answer questions and they will NOT be rescheduled unless there is proof of authorized absence.

Determination of your course grade will be as follows:

<table>
<thead>
<tr>
<th>LECTURE</th>
<th>LAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 lecture examinations, 100 points each</td>
<td>Lab Quizzes/writeups, 12 at 10 points each</td>
</tr>
<tr>
<td>1 final examination (comprehensive)</td>
<td>Two laboratory reports at 15 points each</td>
</tr>
<tr>
<td></td>
<td>Lab participation points</td>
</tr>
<tr>
<td>Sub Total: 430</td>
<td>Sub Total: 170</td>
</tr>
</tbody>
</table>
Note: Of the total possible points (600), 170 will be earned in the Laboratory.

To determine your grade: Add points scored for Exams I through IV; add total points for lab activities. To this total add the total PopQuiz bonus points. Divide this total by 6 to get a % score. Normally, 90-100% = A; 80-89% = B; 70-79% = C and 60-69% = D.

Bonus point opportunities - Pop Quizzes will be held in class without prior notice! The instructor has no obligation to provide any other means for announcement of these quizzes. There will be NO opportunities to make-up these quizzes as they are totally BONUS points.

Computer access information
Activate your Net ID and password at http://gateway.tamu.edu/ then use these codes to check the grade information posted to http://elearning.tamu.edu. You can also use these codes to access the HOWDY portal at https://howdy.tamu.edu.

Grade Checks & Exam Challenges
Please note that grade checks and exam challenges can only be made by computer application. Submit requests for grade checks via the Lower Division Biology Homepage at: http://www.bio.tamu.edu/lbd. You will be notified by email when a grade check is ready for pickup. Come to 315 Heldenfels and show your I.D. to pickup a grade check. Exam challenges are submitted via an Exam Challenge Form at: http://www.bio.tamu.edu/lbd. All exam challenge forms will be forwarded to Dr. Hall for review.

Re-grading: Is at the discretion of the lab instructor. Any re-grade will be for the entire exam or assignment, so the score may go up, go down, or remain unchanged. Requests for re-grading must be initiated within two weeks of the assignment being returned to the student and must be completed before the last official day of classes.

Academic Integrity: - "An Aggie does not lie, cheat or steal or tolerate those who do". The Honors Council provides a means to report and appeal allegations of academic dishonesty. Please see the Rules and Procedures at http://www.tamu.edu/aggiehonor. Ignorance of the rules does not excuse any member of the TAMU community from the requirements of the Honor System.

Academic misconduct involves any of the following offenses: cheating, fabrication, falsification, multiple/duplicate submissions, plagiarism and complicity in these offenses. Texas A&M University students are responsible for authenticating all work submitted to an instructor. If asked, students must be able to produce proof that the item submitted is indeed the work of the student. Students must keep appropriate records at all times. The inability to authenticate one's work, should the instructor request it, is sufficient grounds to initiate an academic dishonesty case. See http://aggiehonor.tamu.edu/Descriptions/.

Copyright: The handouts used in this course are copyrighted. "Handouts" are all materials generated for this class, which include but are not limited to syllabi, quizzes, exams, in-class materials, class notes on the web, review sheets, problem sets and copy packets. You do not have the right to copy them unless you are expressly granted permission. As commonly defined, plagiarism consists of passing off as one's own the ideas, words, writings, etc., which belong to another. In accordance with this definition, you are committing plagiarism if you copy the work of another person and turn it in as your own, even if you should have the permission of that person. Plagiarism is one of the worst academic sins, for the plagiarist destroys the trust among colleagues without which research cannot be safely communicated. If you have any questions regarding plagiarism, please consult the latest issue of the Texas A&M University Student Rules under the section "Scholastic Dishonesty".

Statement on Disabilities: The Americans with Disabilities Act is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation for their disabilities. If you believe you have a disability requiring accommodation, please contact the Department of Student Life, Services for Students with Disabilities, in Cain Hall, room B118 or call 845-1637 (website http://disability.tamu.edu).
Lecture Schedule and Subject

<table>
<thead>
<tr>
<th>Date</th>
<th>Subject</th>
<th>Reading Assignment</th>
<th>Lab Manual Exercises</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 27</td>
<td>M Seeds - Germination</td>
<td>Ch. 6 (87-88); CD</td>
<td>Ex 1. The Cell Theory Seed germination setup</td>
</tr>
<tr>
<td>Aug 28</td>
<td>W Plant Cell components</td>
<td>Ch. 2 (16-23); CD</td>
<td></td>
</tr>
<tr>
<td>Aug 31</td>
<td>F Plant Tissues</td>
<td>Ch. 3 (28-32); CD</td>
<td></td>
</tr>
<tr>
<td>Sept 5</td>
<td>M Stems, Leaves</td>
<td>Ch. 3 (33-35) and Ch. 4 (49-50)</td>
<td>Ex 3. Seedling Development</td>
</tr>
<tr>
<td>Sept 5</td>
<td>W Roots Soils and Water</td>
<td>Ch. 3 (34-35) and Ch. 4 (49-50)</td>
<td></td>
</tr>
<tr>
<td>Sept 7</td>
<td>F Ag origins-early sites-domesticated crops</td>
<td>Ch. 11 (172-180) CD</td>
<td></td>
</tr>
<tr>
<td>Sept 10</td>
<td>M Angiosperm life cycle</td>
<td>Ch. 5-6 (69-98); CD</td>
<td>Ex 4. Enzymes</td>
</tr>
<tr>
<td>Sept 10</td>
<td>W Carbohydrates Lipids, amino acids-Proteins</td>
<td>Ch. 1.9-12; CD</td>
<td></td>
</tr>
<tr>
<td>Sept 14</td>
<td>F Photosynthesis Light (energy) reactions</td>
<td>Ch. 4. (56-61); CD</td>
<td></td>
</tr>
<tr>
<td>Sept 24</td>
<td>M Exam 1 (to Respiration)</td>
<td>Ch. 4 (67); CD</td>
<td>Ex 6. Photosynthesis Germination paper due</td>
</tr>
<tr>
<td>Sept 26</td>
<td>W Cell cycle; cell division - Mitosis</td>
<td>Ch. 2 (24-27); CD</td>
<td></td>
</tr>
<tr>
<td>Sept 28</td>
<td>F Genetics - Mendel - DNA replication</td>
<td>Ch. 7 (99-112); CD</td>
<td></td>
</tr>
<tr>
<td>Oct 1</td>
<td>M Nucleic Acids-DNA replication</td>
<td>CD; Ch. 7 (12-14)</td>
<td>Ex 2. Cell division, mitosis, meiosis</td>
</tr>
<tr>
<td>Oct 3</td>
<td>W Gene Structure-transcription-translation</td>
<td>See CD; Ch. 7.2 (112-115)</td>
<td></td>
</tr>
<tr>
<td>Oct 5</td>
<td>F McClintock-transposons-epigenetics</td>
<td>Ch. 12 (192-194); CD</td>
<td></td>
</tr>
<tr>
<td>Sept 8</td>
<td>M Taxonomy ; Plant systematics & evolution</td>
<td>Ch. 8 (118-133) CD</td>
<td>Ex 4. Genetics and Heredity</td>
</tr>
<tr>
<td>Sept 10</td>
<td>W Algae</td>
<td>Ch. 22 (382-398)</td>
<td></td>
</tr>
<tr>
<td>Sept 12</td>
<td>F Bryophytes</td>
<td>Ch. 9 (134-142); CD</td>
<td></td>
</tr>
<tr>
<td>Oct 15</td>
<td>M Ferns, fern allies (seedless vasc plants)</td>
<td>Ch. 9 (142-144); CD</td>
<td>Ex 8. Non-seed bearing plants</td>
</tr>
<tr>
<td>Oct 16</td>
<td>T Review session - 7:30 to 9:00 p.m.</td>
<td>Ch. 9 (144-149); CD</td>
<td></td>
</tr>
<tr>
<td>Oct 17</td>
<td>W Gymnosperms</td>
<td>Ch. 9 (144-149); CD</td>
<td></td>
</tr>
<tr>
<td>Oct 19</td>
<td>F Exam 2 (to Ferns - seedless vasc plants)</td>
<td>CD</td>
<td></td>
</tr>
<tr>
<td>Oct 22</td>
<td>M Good fungi - Bad fungi</td>
<td>Ch. 23-25 (399-462); CD</td>
<td>Ex 9. Cone-bearing plants</td>
</tr>
<tr>
<td>Oct 24</td>
<td>W Grasses</td>
<td>Ch. 12 (183-186)</td>
<td></td>
</tr>
<tr>
<td>Oct 26</td>
<td>F Legumes and starchy staples</td>
<td>Ch. 13 (205-217), Ch. 14 (218-232)</td>
<td></td>
</tr>
<tr>
<td>Oct 29</td>
<td>M Plant nutrition</td>
<td>See CD; Ch. 15 (235-248)</td>
<td>Ex 10. Flowering Plant Anatomy</td>
</tr>
<tr>
<td>Oct 31</td>
<td>W Plant Growth and Development</td>
<td>See CD; Ch. 15 (246-247)</td>
<td></td>
</tr>
<tr>
<td>Nov 2</td>
<td>F Ecology: Nutrient cycles</td>
<td>Ch. 26 (465-490)</td>
<td></td>
</tr>
<tr>
<td>Nov 5</td>
<td>M Gene Cloning and Biotechnology</td>
<td>See CD</td>
<td>Ex 12. Transgenic Plants-GUS expression in Arabidopsis -1</td>
</tr>
<tr>
<td>Nov 7</td>
<td>W Gene synthesis</td>
<td>See CD</td>
<td></td>
</tr>
<tr>
<td>Nov 8</td>
<td>R Review session - 7:30 to 9:00 p.m.</td>
<td>See CD; Ch. 15 (249-250)</td>
<td></td>
</tr>
<tr>
<td>Nov 9</td>
<td>F Genetic Engineering of Plants</td>
<td>See CD; Ch. 15 (295-197); Ch. 15 (295-260)</td>
<td>Ex 12. Transgenic Plants-GUS expression in Arabidopsis -2</td>
</tr>
<tr>
<td>Nov 12</td>
<td>M Feeding a Hungry World</td>
<td>Ch. 12 (195-197); Ch. 15 (246-260).</td>
<td>Ex 11. Protein Synthesis</td>
</tr>
<tr>
<td>Nov 21</td>
<td>W Thanksgiving Holiday</td>
<td>Thanksgiving Holiday</td>
<td></td>
</tr>
<tr>
<td>Nov 23</td>
<td>F Thanksgiving Holiday</td>
<td>Thanksgiving Holiday</td>
<td></td>
</tr>
<tr>
<td>Nov 26</td>
<td>M Biomes</td>
<td>Ch. 19 (321-336)</td>
<td>Ex 13. Campus Tour and Virtual Field Trip</td>
</tr>
<tr>
<td>Nov 28</td>
<td>W Medicinal Plants</td>
<td>Ch. 20 (341-359)</td>
<td></td>
</tr>
<tr>
<td>Nov 30</td>
<td>F Psychosomatic Plants</td>
<td>Dead Days</td>
<td></td>
</tr>
<tr>
<td>Dec 3</td>
<td>M Review in lecture room</td>
<td>Ch. 6 (478-488)</td>
<td>Finals</td>
</tr>
</tbody>
</table>
Texas A&M University

Core Curriculum

Initial Request for a Course Addition to the Fall 2014 Core Curriculum

Foundational Component Area: Life and Physical Sciences

In the box below, describe how this course meets the Foundational Component Area description for Life and Physical Sciences. Courses in this category focus on describing, explaining, and predicting natural phenomena using the scientific method. Courses involve the understanding of interactions among natural phenomena and the implications of scientific principles on the physical world and on human experiences.

How does the proposed course specifically address the Foundational Component Area definition above?

Biology 107 is a survey of animal life emphasizing cell organization, genetics, evolution, diversity of invertebrates/vertebrates, anatomy/physiology, the interaction of animals with their environment and how these impact the human experience. Course includes a weekly laboratory component that implements use of the scientific method to reinforce and provide supplemental information related to lecture topics.

Core Objectives

Describe how the proposed course develops the required core objectives below by indicating how each learning objective will be addressed, what specific strategies will be used for each objective and how student learning of each objective will be evaluated.

Critical Thinking (to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information):

The scientific method is the fundamental basis of both zoology lecture and lab. Lectures expose students to historical scientific experiments allowing them to hypothesize possible outcomes, reinterpret results, and explore alternative methodologies. Lecture exams consist of a variety of questions to assess students’ ability for critical thinking, analysis, application, and synthesis of course information. The zoology laboratory component provides a hands-on, active learning approach with scientific method based exercises that support students developing their own hypotheses, and independently generating, analyzing, and interpreting data. Experimental conclusions are critiqued, evaluated and summarized in formal written lab reports, homework assignments, quizzes and laboratory practical exams.

Communication (to include effective development, interpretation and expression of ideas through written, oral and visual communication):

Students interpret laboratory experimental results in conventional written lab reports and homework assignments implementing graphs, tables, figures, and text. Lab practical stations mimic visual representations of experimental setups requiring students to convey the purpose, main idea, or hypothesis of the exercise. Microscopic slide images, specimen dissections, and biological model/process observations are recorded, diagrammed, and/or illustrated weekly in a laboratory illustration notebook. Lab introductions and conclusions involve instructor/student interaction with examination and summarization of concepts through the medium of rapid fire questions.

Empirical and Quantitative Skills (to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions):

All laboratory exercises involve the generation and/or manipulation and subsequent analysis of numerical data. These data are presented and summarized in tabular and/or graphic form for homework, lab reports, quizzes, and practical exams. Specific lecture topics, specifically genetics and evolution, also require students to manipulate and interpret numerical data. Students’ aptitude in these practices are evaluated via computational problems on lecture exams.
Texas A&M University

Core Curriculum

Initial Request for a Course Addition to the Fall 2014 Core Curriculum

Teamwork (to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal):

The majority of laboratory exercises require students to work in groups (typically of four students). Members of each group perform separate components of the lab exercise; the group members then interact to produce a set of group-compiled results. Each student subsequently uses the group-compiled results as the basis for his/her written lab assignment (in-class, homework or lab report). Teamwork is assessed by direct observation by the lab instructor and the assignment of appropriate participation points. During interactive lab summaries and lecture discussions of specific experiments, students have the opportunity to consider different explanations of data and how these might yield different points of view. During lecture, students have the opportunity to interact with classmates to solve problems presented via a classroom interactive media mechanism. Students may discuss the problem, assist others with understanding the concept, and then independently infer and submit their answers electronically.

Please be aware that instructors should be prepared to submit samples/examples of student work as part of the future course recertification process.
Texas A&M University

Core Curriculum

Initial Request for a Course Addition to the Fall 2014 Core Curriculum

Foundational Component Area: Life and Physical Sciences

In the box below, describe how this course meets the Foundational Component Area description for Life and Physical Sciences. Courses in this category focus on describing, explaining, and predicting natural phenomena using the scientific method. Courses involve the understanding of interactions among natural phenomena and the implications of scientific principles on the physical world and on human experiences.

How does the proposed course specifically address the Foundational Component Area definition above?

Biology 111 is the first half of an introductory two-semester survey of contemporary biology that covers the chemical basis of life, structure and biology of the cell, molecular biology and genetics including the role of biotechnology in molecular genetics. Course includes a weekly laboratory that emphasizes the scientific method to reinforce and provide supplemental information related to the lecture topics.

Core Objectives

Describe how the proposed course develops the required core objectives below by indicating how each learning objective will be addressed, what specific strategies will be used for each objective and how student learning of each objective will be evaluated.

Critical Thinking (to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information):

The scientific method is the fundamental basis of both lecture and lab. Lectures discuss knowledge obtained from interpreting results of historical scientific experiments and allow students to explore the implications of alternative outcomes. Lecture exams include questions to assess students’ ability for critical thinking and analysis and their capacity for synthesizing information presented at different times during the course. The laboratory component of the course include hands-on practice and evaluation of exercises based on the scientific method including the identification of specific hypotheses, analysis of data from in-lab exercises, interpretation of results, formulation of exercise related questions, weekly quizzes, and written homeworks and lab reports.

Communication (to include effective development, interpretation and expression of ideas through written, oral and visual communication):

Homework assignments and lab reports require written interpretation of the results of the laboratory exercises. Labs conclude with an instructor/student interactive summary during which students orally respond to and ask questions. Both lecture and lab utilize visual communication through interpretation of data presented in graphs, tables, and figures.

Empirical and Quantitative Skills (to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions):

All lab exercises involve the generation and/or manipulation and analysis of of exercise-specific numerical data. As described above, these are then summarized in tabular and/or graphic form for homeworks, lab reports, quizzes and practical exams. Certain lecture topics, particularly in biological chemistry and genetics, also require students to manipulate and interpret numerical data. Students’ facility in these areas are specifically evaluated on lecture exams.

Teamwork (to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal):
A majority of the laboratory exercises require the students to work in groups (typically groups of four). Different groups or members of each group perform separate components of the lab exercise; the groups or group-members then interact to produce a set of group-compiled results. Each student subsequently uses the group-compiled results as the basis for his/her written lab assignment (in-class, homework or lab report). Teamwork is assessed by direct observation by the lab instructor and the assignment of appropriate participation points. During the interactive lab summaries students have the ability to consider different interpretations of the data and how these might yield different points of view.

Please be aware that instructors should be prepared to submit samples/examples of student work as part of the future course recertification process.
Texas A&M University
Core Curriculum
Initial Request for a Course Addition to the Fall 2014 Core Curriculum

Foundational Component Area: Life and Physical Sciences

In the box below, describe how this course meets the Foundational Component Area description for Life and Physical Sciences. Courses in this category focus on describing, explaining, and predicting natural phenomena using the scientific method. Courses involve the understanding of interactions among natural phenomena and the implications of scientific principles on the physical world and on human experiences.

How does the proposed course specifically address the Foundational Component Area definition above?

- **Biology 112** is the second half of an introductory two-semester survey of contemporary biology that covers evolution, the history of life, biodiversity (including human parasites and their diseases) and form and function of organisms including human cardiopulmonary and nervous systems. Course includes a weekly laboratory that emphasizes the scientific method to reinforce and provide supplemental information related to the lecture topics.

Core Objectives

Describe how the proposed course develops the required core objectives below by indicating how each learning objective will be addressed, what specific strategies will be used for each objective and how student learning of each objective will be evaluated.

Critical Thinking (to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information):

The scientific method is the fundamental basis of both lecture and lab. Lectures discuss knowledge obtained from interpreting results of historical scientific experiments and stresses inductive reasoning in interpreting biological patterns and processes. Lecture exams include questions to assess students’ ability for critical thinking and analysis and their capacity for synthesizing cumulative information presented during the course. The laboratory component of the course includes the analysis of population-genetic data, detailed comparisons of organisms from single-celled organisms to mammals and exercises measuring cardiopulmonary and nervous-systems function. Lab assessments include weekly quizzes, two major laboratory practical exams and written homeworks and lab reports.

Communication (to include effective development, interpretation and expression of ideas through written, oral and visual communication):

Homework assignments and lab reports require written interpretation of the results of the laboratory exercises. Labs conclude with an instructor/student interactive summary during which students orally respond to and ask questions. Both lecture and lab utilize visual communication through interpretation of data presented in graphs, tables, and figures.

Empirical and Quantitative Skills (to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions):

Population genetics, cardiopulmonary and nervous system and animal diversity lab exercises involve the generation and for manipulation and analysis of of exercise-specific data. These are then summarized in tabular and/or graphic form for homeworks, lab reports, quizzes and practical exams. Then animal diversity lab assignment requires cladistic analysis (phylogenetic reconstruction) of character-state data. Certain lecture topics, particularly in evolution/population genetics also require students to manipulate and interpret numerical data. Students’ facility in these areas are specifically evaluated on lecture exams and laboratory written assignments.
Texas A&M University

Core Curriculum

Initial Request for a Course Addition to the Fall 2014 Core Curriculum

Teamwork (to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal):

Laboratory exercises frequently require the students to work in groups (typically groups of four). Members of each group perform separate components of the lab exercise; the group members then interact to produce a set of group-compiled results. Each student subsequently uses the group-compiled results as the basis for his/her written lab assignment (in-class, homework or lab report). One lab assignment requires an oral 5-10 minute in-class group presentation. Teamwork is assessed by direct observation by the lab instructor and the assignment of appropriate participation points. During the interactive lab summaries students have the ability to consider different interpretations of the data and how these might yield different points of view.

Please be aware that instructors should be prepared to submit samples/examples of student work as part of the future course recertification process.
Texas A&M University
Core Curriculum
Initial Request for a Course Addition to the Fall 2014 Core Curriculum

Foundational Component Area: Life and Physical Sciences

In the box below, describe how this course meets the Foundational Component Area description for Life and Physical Sciences. Courses in this category focus on describing, explaining, and predicting natural phenomena using the scientific method. Courses involve the understanding of interactions among natural phenomena and the implications of scientific principles on the physical world and on human experiences.

How does the proposed course specifically address the Foundational Component Area definition above?

GEOG 213 is a laboratory course focused on describing and explaining the earth's surface. We group the surface features into three broad categories (climates, ecosystems, and landforms) that correspond with the three major subdisciplines of contemporary physical geography, namely, climatology, biogeography, and geomorphology. In this course we describe the earth's surface and seek a conceptual understanding of how surface features develop. We use a problem-based approach, as science is at its core a problem-centered endeavor. Students use graphs, maps, quantitative expressions, and conceptual models to understand and predict how earth surface systems operate. Students also gain an understanding of how earth systems (atmosphere, hydrosphere, biosphere, lithosphere) interact to form the landscapes we observe, and how human societies interact with these natural systems. Human interactions with their environments is a fundamental theme in geography.

Core Objectives

Describe how the proposed course develops the required core objectives below by indicating how each learning objective will be addressed, what specific strategies will be used for each objective and how student learning of each objective will be evaluated.

Critical Thinking (to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information):

GEOG 213 is a one-hour laboratory course in physical geography. Students complete laboratory assignments that entail learning fundamental concepts and applying those concepts to various scenarios. Problem-solving lies at the heart of scientific inquiry; by using a problem-based approach the students gain general insights about how science is conducted, in addition to specific insights about concepts in physical geography. Laboratory activities require problem-solving, creative thinking, analysis, synthesis, concepts, etc.

Communication (to include effective development, interpretation and expression of ideas through written, oral and visual communication):

Physical geography is a visual discipline, as it deals with maps and other representations of the earth's surface (e.g., satellite images, photographs). It also entails graphical characterizations of processes and patterns. Through the laboratory exercises the students learn to interpret and synthesize the information contained in these characterizations. They also conduct their own mapping and graphing, and communicate their interpretations in writing.

Empirical and Quantitative Skills (to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions):

Empirical observation and quantification lie at the heart of the laboratory experience. Students grapple with linking conceptual models to empirical facts, whether they are conducting climate observations in the field, analyzing maps in the laboratory, or conducting basic statistical analyses.
Teamwork (to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal):

Teamwork is integrated into many of the laboratory assignments through group exercises, wherein team members collaborate to obtain the data required for analyses relevant to the problems they are asked to solve. For these exercises, the role of each team member is integral to obtaining a complete dataset and/or completing the analyses. Students learn the role and limitations of empirical observations as they relate to problem-solving and to reconciling different points of view about physical geography topics. They also identify and report areas of uncertainty that prevent consensus. The contributions of each student to the process will be assessed by the observations of the Teaching Assistant, by peer review, and by the student’s own reflections.

Please be aware that instructors should be prepared to submit samples/examples of student work as part of the future course recertification process.
Texas A&M University

Core Curriculum

Initial Request for a lower division course included in the current Core Curriculum
to be considered for the Fall 2014 Core Curriculum

1. This request is submitted by (department name): Department of Horticultural Sciences

2. Course prefix and number: HORT 201

3. Texas Common Course Number: 1301

5. Semester credit hours: 3

6. This request is for consideration in the following Foundational Component Area:
 □ Communication
 □ Mathematics
 □ Life and Physical Sciences
 □ Language, Philosophy and Culture
 □ Creative Arts
 □ American History
 □ Government/Political Science
 □ Social and Behavioral Sciences

7. This course should also be considered for International and Cultural Diversity (ICD) designation:
 □ Yes □ No

8. How frequently will the class be offered? Every fall, spring and summer

9. Number of class sections per semester: 1

10. Number of students per semester: 200 to 340

11. Historic annual enrollment for the last three years: 501 510 556

This completed form must be attached to a course syllabus that sufficiently and specifically details the appropriate core objectives through multiple lectures, outside activities, assignments, etc. Representative from department

submitting request should be in attendance when considered by the Core Curriculum Council.

12. Submitted by:

 Course Instructor

 [Signature]

 Date

 1/29/13

13. Approvals:

 Department Head

 [Signature]

 Date

 2/9/13

14. College Dean/Designee

 [Signature]

 Date

For additional information regarding core curriculum, visit the Texas Higher Education Coordinating Board website at www.thecb.state.tx.us/corecurriculum2014

See form instructions for submission/approval process.
Texas A&M University

Core Curriculum

Initial Request for a Course Addition to the Fall 2014 Core Curriculum

Foundational Component Area: Life and Physical Sciences

In the box below, describe how this course meets the Foundational Component Area description for Life and Physical Sciences. Courses in this category focus on describing, explaining, and predicting natural phenomena using the scientific method. Courses involve the understanding of interactions among natural phenomena and the implications of scientific principles on the physical world and on human experiences.

How does the proposed course specifically address the Foundational Component Area definition above?

HORT 201 Horticultural Science and Practices surveys the basic biology of plants (anatomy, morphology, physiology, life cycle), environmental sciences (water, light, temperature, soil, atmosphere, nutrient elements) and biotic factors (pests) that impact the growth, development, productivity and aesthetic value of horticultural crops, e.g. fruits, vegetables and ornamental crops. Each topic begins with the fundamental scientific basis of the topic and, where appropriate, explain the scientific method used to develop the conclusions, then progresses to the impacts on plants and/or the environment, then the practical applications on horticultural crops.

Core Objectives

Describe how the proposed course develops the required core objectives below by indicating how each learning objective will be addressed, what specific strategies will be used for each objective and how student learning of each objective will be evaluated.

Critical Thinking (to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information):

How Addressed
Students will develop critical thinking skills through integration of “structure-function” relationships, “cellular physiology-whole plant relationships”, “environment-plant” interactions, or deduction of causal effects from symptomology.

Strategies
Each topic will begin with scientific background, followed by how this relates to environmental and/or biological effects, then practical applications. Examples would be:
Lectures on water would begin with the physical chemistry of water, such as the principle of heat of vaporization, which will be followed by lecture on water movement through plants and out of leaves by transpiration. Then the class would dialogue about how this explains why a plant can do not overheat in full sun in the middle of a hot August day in Texas. Another example would be lecture on the light absorption spectrum of chlorophyll and the light emission spectrum of artificial lights, then question the class “What is the best artificial light source under which to grow plants indoors and why?” In addition, this approach is used to promote critical thinking outside of class by simply ending the photosynthesis and respiration lectures with a take-home question such as: “If you went home tonight, put your ficus in a plastic bag, exhaled into the bag, then sealed the bag with a bread twist tie – would the plant’s photosynthesis increase or not?” The next lecture would start with students discussing the answer. This might be followed with a question such as, “Could you do the same thing and make your salad last longer when stored in your refrigerator?” I call these “Food for Thought” questions to stimulate critical thinking both inside and outside the classroom. As the lectures progress through the semester and each new topic builds on and interrelates to the previous topics, the students would be able to critically evaluate how a certain plant STRUCTURE would impact certain plant FUNCTION(S) relative to control of water loss, increase/decrease of photosynthesis, anatomical basis of asexual propagation, hormonal control of growth, crop productivity, etc.
Texas A&M University

Core Curriculum

Initial Request for a Course Addition to the Fall 2014 Core Curriculum

How evaluated
Each exam will have questions formulated to test for the ability to answer these “Food for thought” type questions.

Communication (to include effective development, interpretation and expression of ideas through written, oral and visual communication):

How addressed
Active learning is used in almost all lectures, which includes extensive question and answer dialogue with students during the class. Students will be given “Food for Thought” questions at the end of most lectures, and the class will verbalize answers/solutions at the beginning of the next lecture.

Strategies
Students will be given “Food for Thought” questions at the end of most lectures, and we will spend the first few minutes of the next lecture verbally discussing the class answers. Or, questions will be raised during the lecture. Questions about controversial issues will be used to stimulate self reflections then dialogue, such as “We have been cloning plants for centuries without controversy, so why is the recent cloning of animals so controversial?”

More often than not, the Food for Thought question would come from a newspaper headline, nightly news or 60 minutes episode on topics such as cloning, climate change, water restrictions, loss of habitat and biodiversity, oil spills, nitrate pollution from agriculture, how will plants repopulate after recent forest fires, etc., especially as these factors relate to the urban and home landscape - the new American farm is your interiorscape and your yard. This is an effective approach to get students to express themselves; the timid student my chime-in on a topic they are passionate about. Also, it applies their education to the real world.

How evaluated
To make sure the student can independently express ideas, exams will be used to test the student’s ability to express concepts, interpretations and personal views in writing. The grade may not be based on whether or not the answer is right or wrong, but rather was the answer to the point, clear and succinct.

Empirical and Quantitative Skills (to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions):

How addressed
In many of the topics, the scientific basis or horticultural application lends itself to quantitative or qualitative analysis. Examples would be, reasoning to diagnose causal abiotic and biotic stress from visual plant symptoms, deduce quantitative responses or induce trends from graphs, or solve fertilizer problems, etc.

Strategies
Students will develop basic empirical and quantitative skills in areas such as physical chemistry and environmental relations and how the heat of vaporization of water is used to determine the degree evaporative cooling by transpiration. Or practical applications, such as mathematically calculating the lowest cost fertilizer per unit nitrogen given the fertilizer analysis and mass of the bagged fertilizer. Students also will use reasoning to identify nutrient deficiencies from visual symptomology. Many of the relationships are presented in graphic form, thus the students learn how to read and interpret graphs. For example, students will use graphs to determine the light compensation point from plots of photosynthesis and respiration rates, and graphically observe how the light compensation point decreases as plants acclimate to low light interior environments.

How evaluated
Exam questions will be formulated to test the students ability solve problems, reason cause and effect, and interpret trends from graphs.
Texas A&M University

Core Curriculum

Initial Request for a Course Addition to the Fall 2014 Core Curriculum

Teamwork (to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal):

How addressed
The major pedagogical tool used in lecture is active learning, including active learning exercises with students. Food for Thought questions will be used to stimulate small groups discussions.

Strategies
Students will participate as groups in “active learning” exercises, such as using students to act-out electron and light capture by chlorophyll and resultant ATP synthesis in the electron transport chain of the light reaction of photosynthesis. “Think-Pair Share” or “Think-Group Share” will be used for active class participation on many topics.

How evaluated
I always formulate a question that can only be answered if one participated in or paid attention to the active learning exercise. This assures knowledge was gained from the activity.

Please be aware that instructors should be prepared to submit samples/examples of student work as part of the future course recertification process.
SYLLABUS
HORT 201
Horticultural Science and Practices

Course title and number HORT 201
Term Fall 2013
Meeting times and location Tuesday and Thursday, 11:10-12:25, KLEB 115

Instructor Information
Name David Wm. Reed
Telephone numbers
Work: 979-458-0710
Cell: 979-777-2750
Home: 979-690-0401
dwreed@tamu.edu
Email address
Office hours Anytime as arranged with student
Office location AGLS 515W and HFSB 408

COURSE DESCRIPTION AND PREREQUISITES
Survey of the basic biology of plants (anatomy, morphology, physiology, life cycle), environmental sciences (water, light, temperature, soil, atmosphere, nutrient elements) and biotic factors (pests) that impact the growth, development, productivity and aesthetic value of horticultural crops, e.g. fruits, vegetables and ornamental crops. Each topic begins with fundamental scientific basics, then progresses to the impacts on plants and/or the environment, then the practical applications on horticultural crops. Prerequisites: none

LEARNING OUTCOMES AND COURSE OBJECTIVES
Subject Matter Based
• Students will recognize plant "architecture" or “structure” as determined by outer morphology and internal anatomy.
• Students will develop a basic knowledge of plant "function", with a focus on the fundamental principles of photosynthesis, respiration and hormones.
• Students will master fundamental physical and chemical basis of the environmental variables of light, temperature, water, soil, atmosphere, mineral nutrition and how these affect plant growth.
• Students will develop practical skills to "orchestrate" plant growth with hormones, pruning, nutrition, irrigation, manipulation of atmospheric gases and soil modification.

Required Elements
• Critical Thinking: Students will develop critical thinking skills through integration of “structure-function” relationships, “cellular physiology-whole plant relationships”, “environment-plant” interactions, or deduction of causal effects from symptomology.
• Empirical and Quantitative Skills: Students will develop basic empirical and quantitative skills in areas such as hea: of vaporization and environmental cooling, photosynthetically active radiation (PAR) and plant acclimation to low light, fertilizer analysis and computation of most economical costs, etc.
• Communication Skills: Students will be given “Food for Thought” questions at the end of most lectures, and will verbalize answers/solutions at the beginning of the next lecture, and students will express their understanding of the course concepts in writing.
• Teamwork: Students will participate as groups in “active learning” exercises, such as using students to act-out electron and light capture by chlorophyll and resultant ATP synthesis in the electron transport chain of the light reaction of photosynthesis. “Think-Pair Share” or “Think-Group Share”
will be used for active class participation on many topics.

- Personal Responsibility: Some "Food for Thought" questions posed during lecture or at the end of each lecture will be on topics such as: effect individual's philosophy, decisions and/or actions, such as ethical views of genetic engineering and GMOs, and cloning of animals versus cloning of plants; one's carbon footprint relative to climate change and the greenhouse effect; diminishing water supplies and one's reaction to water restriction, etc. Students will be asked to contemplate their personal responsibility relative to these issues.

- Social Responsibility: Some "Food for Thought" questions posed during lecture or at the end of each lecture will be on topics such as climate change and our social responsibility, society's acceptance GMOs and the economic consequences, etc., and contemplate one's social and political responsibilities relative to these controversial topics.

TEXTBOOK AND RESOURCE MATERIAL
Web site: hort201.tamu.edu

GRADING
Exams and weights
100 points Exam 1 (inclusive)
100 points Exam 2 (inclusive)
100 points Exam 3 (inclusive)
100 points Exam 4 (inclusive)
100 points Final Exam (comprehensive)
Grading Scale
10 point scale: A = 90-100, B = 80-89, C = 70-79, D = 60-69, F <= 59
Grade Calculation
- Drop lowest grade of the five (5) exams
- Therefore, your grade is based on a total of 400 points
- Numerical grade: mathematical average of highest 4 exam grades, rounded to next whole number
- Letter grade: letter grade equivalent (see Grading Scale) of your mathematical average; there is no curve on final grades or outside/extra work for extra credit.

EXAM DATES: Exam Dates are posted on the course web site.

MAKE-UP EXAMS:
All absences and make-up polices are based on Student Rules (http://student-rules.tamu.edu/). Make-up exams will be given only for acceptable University excuses as per Student Rule: "The student is responsible for providing satisfactory evidence to the instructor to substantiate the reason for absence", which requires some type of written and approved excuse. And, "to be excused the student must notify his or her instructor in writing (acknowledged e-mail message is acceptable) prior to the date of absence if such notification is feasible. In cases where advance notification is not feasible (e.g. accident, or emergency) the student must provide notification by the end of the second working day after the absence. This notification should include an explanation of why notice could not be sent prior to the class." Email is sufficient for notification of an absence, but it is strongly advised that you to talk to me directly (in person or a phone call) to inform me of the absence - Why? So I can confirm the validity of the absence and explain your options relative to timing of the make-up exam. If possible, the make-up exam will be tentatively scheduled at the time I verify the excused absence. Arrangements for make-up exams must be done directly (in person or a phone call) - I do not discuss arranging make-up exams via email, texting, leaving voice mails, or other electronic means, unless it is an extraordinary situation. Student Rules require that the make-up is "to be completed within 30 calendar days form the last day of the absence". However, the exact time allowed
for the make-up depends on the nature of the excused absence. My guidelines are: The student is given the number of days to make-up the exam equal to the number of days of the excused absence, starting with the day of the exam, and the make-up exam must be taken by the end of the next working day. For example, if the student has an illness and an excused absence for 2 days (the day of the exam plus the next day), then the student is allowed two (2) calendar days, and the make-up exam must be taken by the end of the 3rd day (or next working day, if the 3rd day falls on a weekend or holiday). If the excused absence includes days before the exam such that lectures were missed, then see the instructor for a case-by-case decision to allow sufficient time to view the videos of the missed lectures. If the excused absence is for a planned event, such as sponsored activity, and no lectures are missed, then the student may take the exam before departure if feasible, or a proctored exam may be administered on the trip, or the exam is taken by the end of the day after return; if the absence causes lectures to be missed, an appropriate amount of time will be allowed for the student to view the video tapes of the lectures missed, plus study time - this is arranged on a case-by-case basis. Notification of missing an exam must by the timeline stated above, but written documentation of the excused absence can be turned-in at the time of the make-up exam. If the make-up exam is taken after the graded exams have been returned in class, then a different, but comparable, make-up exam will be given. Any exam missed without following the Student Rules will result in a grade of 0 (unless there are extraordinary extenuating circumstances, and in such cases you must appeal directly to the instructor). If this is your first 0, then it will automatically be used as your drop grade. If you have already used your drop grade, then the 0 will be averaged as a grade. If all this seems confusing, that is why I want you to call me so I can verify your excuse and explain to you the make-up options.

OTHER PERTINENT COURSE INFORMATION

VIDEO TAPE OF LECTURES:
Every lecture will be digitally videotaped. DVDs of each lecture are placed on 2-hour reserve in the West Campus Library Reserve Desk. The DVDs can be viewed on any computer in any of the student computer labs. The Library may post lectures on Media Matrix.

LATE ARRIVALS AND DEPARTURES:
Lecture: I realize A&M is a very large campus. Therefore, late arrivals and early departures will be tolerated within reason (a few minutes). Enter/exit quietly and sit towards the back of the class. However, lecture will start and end on time.
Exams: Late arrivals are not tolerated for exams; after the first student finishes and leaves the room then no other students are allowed in the room to take the exam, unless there is a reasonable and extraordinary reason for arriving late and it can be verified.

CELLULAR PHONES:
If your cell phone or beeper rings during class repeatedly or if you answer a phone that was on vibration, you may be asked to leave the classroom.

ATTENDANCE:
I do not take roll, but please make an effort to attend all lectures.

Course Topics, Calendar of Activities, Major Assignment Dates

<table>
<thead>
<tr>
<th>Number Lectures</th>
<th>Horticulture Science and Practices, Reed</th>
<th>The Biology of Horticulture, Preece and Read</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PART I - BASICS OF HORTICULTURE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>pages 1-2</td>
<td>Chapter 1</td>
<td>Introduction and Definition of Horticulture</td>
</tr>
<tr>
<td>3</td>
<td>pages 3-20</td>
<td>Chapter 3</td>
<td>Plant Anatomy, Morphology & Development Vegetative & Reproductive</td>
</tr>
</tbody>
</table>
1st EXAM

PART II - ENVIRONMENT IN HORTICULTURE

| 2 | pages 30-32 | Chapter 11 & 12 | **Hormones and Growth Substances**
Natural and synthetic hormones (growth substances), sites of synthesis, translocation, manipulating plant growth and development with hormones; practical applications. |
|---|---|---|---|
| 2 | pages 33-49 | Chapter 6 | **Temperature**
Physical Chemistry of heat and temperature relations, Greenhouse Effect, Global Warming, Climate Change, Climatic Zones, Cardinal Temperatures, Chilling & Freezing Damage & Prevention, Stratification, Vernalization, Temperature induced Dormancy |
| 2 | pages 50-59 | Chapter 5 | **Light**
Properties of radiation, Photosynthetically Active Radiation (PAR), Effects of Light Quantity & Quality on plants, Light Measurement, Light Compensation Point, Photoperiodic, Light Acclimatization |

2nd EXAM

| 2 | pages 60-66 | Chapter 7 | **Water**
Properties of water, Humidity, Precipitation, Soil Water, Irrigation Systems, Absorption, Translocation, and Transpiration |
| --- | --- | --- | --- |
| 2 | pages 67-75 | Chapter 8 & 10 | **Soil & Growing Medium**
Soil Types and Components, Chemistry and Physical Properties, Artificial Soil, Growing Medium amendments and Recipes |
| 2 | pages 74-80 | Chapter 9 | **Nutrition and Fertilizers**
Essential Elements, Functions, Deficiency Symptoms, Fertilizer Analysis, Calculation of fertilizer rates and costs, Fertilizer Sources |

3rd EXAM

PART III- HORTICULTURAL PRINCIPLES AND PRACTICES

| 2-3 | pages 81-93 | Chapter 4 & 14 | **Propagation**
Sexual propagation by Seeds; Life Cycle of Plants, Asexual reproduction (cloning) by Cuttings, Layering, and Grafting; Chimeras |
| --- | --- | --- | --- |
| 1 | pages 94-95 | Chapter 13 | **Growth Control**
Pruning, wound healing, Pruning Methods and Terminology, Chemical Pruning, Timing of Pruning |
| 1 | pages 97-100 | Chapter 16 | **Pest and Pest Control**
Pest Control, Integrated Pest Management (IPM), Biological Control, Pest Types -Insects, Mites, Disease Causing Microbes, Weeds |

4th EXAM

FINAL EXAM - COMPREHENSIVE

Americans with Disabilities Act (ADA)
The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services, in Cain Hall, Room B118, or call 845-1637. For additional information visit http://disability.tamu.edu

Academic Integrity
For additional information please visit: http://aggiehonors.tamu.edu

"An Aggie does not lie, cheat, or steal, or tolerate those who do."

Texas A&M University

Core Curriculum

Initial Request for a lower division course included in the current Core Curriculum to be considered for the Fall 2014 Core Curriculum

1. This request is submitted by (department name): Horticultural Sciences

2. Course prefix and number: Hort 202 3. Texas Common Course Number: 1401

Horticultural Science and Practices

4. Complete course title: Laboratory 5. Semester credit hours: 01

6. This request is for consideration in the following Foundational Component Area:

☐ Communication
☐ Mathematics
☒ Life and Physical Sciences
☐ Language, Philosophy and Culture
☐ Creative Arts
☐ American History
☐ Government/Political Science
☐ Social and Behavioral Sciences

7. This course should also be considered for International and Cultural Diversity (ICD) designation:

☐ Yes ☒ No

8. How frequently will the class be offered? Fall and Spring

9. Number of class sections per semester: 5

10. Number of students per semester: 90

11. Historic annual enrollment for the last three years: 180 180 180

This completed form must be attached to a course syllabus that sufficiently and specifically details the appropriate core objectives through multiple lectures, outside activities, assignments, etc. Representative from department submitting request should be in attendance when considered by the Core Curriculum Council.

13. Submit by:

[Signature]

Course Instructor

3/6/13

Date

14. Approvals:

[Signature]

Department Head

3-6-13

Date

15. College Dean/Designee

Date

For additional information regarding core curriculum, visit the Texas Higher Education Coordinating Board website at www.thecb.state.tx.us/corecurriculum2014

See form instructions for submission/approval process.
Texas A&M University
Core Curriculum
Initial Request for a Course Addition to the Fall 2014 Core Curriculum

Foundational Component Area: Life and Physical Sciences

In the box below, describe how this course meets the Foundational Component Area description for Life and Physical Sciences. Courses in this category focus on describing, explaining, and predicting natural phenomena using the scientific method. Courses involve the understanding of interactions among natural phenomena and the implications of scientific principles on the physical world and on human experiences.

How does the proposed course specifically address the Foundational Component Area definition above?

Horticultural Science and Practices Lab is designed to provide a broad understanding of Horticulture through basic and applied science. This is achieved through weekly applied laboratory exercises that emphasize teamwork in creating and interpreting qualitative and/or quantitative data sets, and the synthesis of underlying basic science concepts that drive everyday natural plant phenomena reported in group discussion, along with observation and discussion of specimens and technique in the class and on field trips, and individually prepared written in-depth analysis of team-collected experimental results that reflect the scientific method.

Core Objectives

Describe how the proposed course develops the required core objectives below by indicating how each learning objective will be addressed, what specific strategies will be used for each objective and how student learning of each objective will be evaluated.

Critical Thinking (to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information):

1. Students will individually prepare a notebook-format journal, consisting of datasets collected in class. Higher order thinking will be required to answer question sets posed about the experiment at hand and its scientific and sometimes social implications.
2. Student-generated dichotomous keys are used to identify a finite set of plants to develop higher order thinking skills and to help in understanding and retention of biological terminology. Traditional floral keys are also used.
3. In an individual activity, students must synthesize the information at hand to determine the most appropriate technique to propagate student-selected 'attractive' plant materials, and subsequently evaluate the results of their decisions at the termination of the experiment. Students are often motivated to pick the most appropriate techniques, since successfully cloned plant materials go home with the students.

Communication (to include effective development, interpretation and expression of ideas through written, oral and visual communication):

1. Student groups are required to post data for class consumption with immediate feedback on format and missing/faulty information.
2. Subjective evaluations of mid-experiment results are often presented to the class orally by groups or individuals.
3. Demonstrations, by instructors and students, of grafting, layering and division serve as a basis of understanding of plant morphology and require exposition during demonstration and explanations in end-of-semester written reports.

Empirical and Quantitative Skills (to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions):
Texas A&M University

Core Curriculum

Initial Request for a Course Addition to the Fall 2014 Core Curriculum

1. Students learn to calculate fertilizer concentrations in class and have graded problem sets.
2. Students learn Metric and Standard systems interconversions with graded problem sets
3. Results of the experimental application of increasing fertilizers concentration on plants acts as a platform for inquiry into the scientific method and a subsequent discussion of social responsibility in application of agricultural chemicals.

Teamwork (to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal):

Student teams of 2-6 in class:
1. Begin plant experiments (>10 occurrences) by planting transplants, seeds, propagules
2. Harvest experiments, measure quantitative variables (height, weight, branching vigor) and record and share datasets (>10 occurrences)
3. Develop unique keys to identify a finite set of plants, and teams must repeat the key until the instructor judges it appropriate. Subsequently, those student groups must apply standard keys to correctly identify species, variety, & cultivar of several plants.
4. Measure plant photosynthetic light levels that become variables in plant experimental treatments.

Please be aware that instructors should be prepared to submit samples/examples of student work as part of the future course recertification process.
Horticultural Science and Practices Laboratory
HORT 202
Course Policy and Syllabus
Spring 2013
Mr. Matthew W Kent

Lab Hours:
Monday sec 501: 2:00pm - 4:50pm
Tuesday sec 502: 12:45pm - 3:35pm
Wednesday sec 503: 9:10am - 12:00pm
Wednesday sec 504: 2:03pm - 4:50 pm
Thursday sec 505: 12:45pm - 3:35pm

All lab sections are held in HFSB 112

Course Objectives (Learning Outcomes)
Horticultural Science and Practices Lab is designed to provide a broad understanding of Horticulture through basic and applied science. This is achieved through weekly quizzes over concepts, applied laboratory exercises that emphasize teamwork in creating and interpreting qualitative and quantitative data and synthesis of underlying concepts in group discussion, observation and discussion of specimens and technique on field trips, and written individually prepared in-depth analysis of team-collected experimental results.

- Botany
 - Learn scientific terminology to describe plant structures
 - Understand basic taxonomic relationships of plants

- Plant Biochemistry & Physiology
 - Understand the basic phenology of plant materials and the scientific means to manipulate the underlying plant physiology for practical purposes
 - Application of chemical growth regulators to illustrate the junction of biochemistry and economic horticulture
 - Introduction to plant essential elements
 - Experimentation with fertilizer application levels as a means of demonstrating physiological response, and as a platform for the discussion of environmental responsibility

- Soil Science
 - Provide a working knowledge of basic soil components
 - Introduction to soil conservation and use of sustainable materials for plant husbandry
 - Understanding of introductory soil chemistry and its impact on plant growth

- Entomology
 - Understanding of basic economic entomology of horticultural crops
 - Rediscovery of the utility of scientific terminology, as applied to insects

- Horticulture
 - Basic understanding of asexual and sexual plant propagation techniques
 - Basic understanding of the care of landscape plant materials
 - Introduction to basic Horticultural mathematical calculations

Prerequisite HORT 201 or registration therein.

Required Text
General Horticulture Laboratory Manual; Second Edition; David Wm. Reed
ISBN 0-8087-9470-1
Instructor Information

<table>
<thead>
<tr>
<th>Matthew Kent, Lecturer</th>
<th>Tulle Alexander, TA</th>
<th>Paige Graves, TA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tues, 12:45pm</td>
<td>Mon, 2:00pm</td>
<td>Wed, 9:10am</td>
</tr>
<tr>
<td>Wed, 2:00pm</td>
<td>Thur, 12:45pm</td>
<td></td>
</tr>
<tr>
<td>HFSB 407 (office)</td>
<td>HFSB 517 (office)</td>
<td>HFSB 418 (office)</td>
</tr>
<tr>
<td>HFSB 403 (lab)</td>
<td>HFSB 502 (lab)</td>
<td>HFSB 402 (lab)</td>
</tr>
<tr>
<td>845-4528 (lab)</td>
<td>845-0135(lab)</td>
<td></td>
</tr>
<tr>
<td>mkent@tamu.edu</td>
<td>tulle5586@neo.tamu.edu</td>
<td>paige_g_08@neo.tamu.edu</td>
</tr>
</tbody>
</table>

Office Hours
Each instructor will inform you of his/her office hours during lab. If you need one of us, phone and office numbers as well as e-mail addresses are provided above.

Attendance and Make-up Labs
- Attendance is mandatory and you must attend each lab in its entirety. A late arrival (after the quiz is over) and/or early departure (before the entire class is dismissed) will result in a zero on the weekly quiz.
- We realize that emergencies may prevent you from attending lab. If this occurs, you are allowed to attend another lab section. However, you must get permission from both your instructor and the instructor who teaches the lab you wish to attend in advance.
- All make-up labs must occur the same week as the missed lab. It is not possible to make up a lab after the missed week, whether the absence is excused or unexcused, due to the changing lab setup.
- Make-up labs are only allowed for university acceptable excuses or with permission of the instructor. Excused absences are defined in the Student Rules (see http://student-rules.tamu.edu/rule7.htm). Labs change every week, so make-up labs can only occur during the week they are missed. If the missed lab cannot be made up during that week, your quiz grade for that week will be a 0.
- You may only miss 3 labs. If you have 4 or more excused absences, you will receive a grade of "I" (incomplete). If the majority of your absences (3) are unexcused, you will receive a grade of "F" in the course.

Grading
HORT 202 is a separate course from HORT 201 and will have a separate 1 hour grade. Grades are determined as follows:
- Weekly quiz grades = 50%
- Lab report = 50%

A. Weekly Quizzes:
Weekly quizzes will be given. You will be allowed to drop a maximum of 2 quizzes, with your grade being determined from a minimum of 9 quizzes. Each quiz will be worth 10 points. 80% or 8 points of each quiz will be based on the previous week's lab material. 20% or 2 points of each quiz will be based on the current week's lab material. Therefore, you are required to read each week's lab material BEFORE coming to class. Each quiz will be 10 minutes long and start 5 minutes after class time. If you arrive while a quiz is in progress, you may take the quiz but you must complete it by the standard completion time (i.e., you will not be given an extension). If you arrive after the quiz has been completed, you will receive a grade of 0 for that quiz. Any student departing from lab early will have his/her quiz invalidated (a grade of 0) and will be considered absent for that lab. Clarification:
This policy dictates that there will be no make-up quizzes given whether the absence is excused or unexcused. Two quiz grades will be dropped to compensate.

B. Lab Report:
- We will be conducting a series of lab exercises throughout the semester. Most exercises will produce data. Your lab report grade will be based on data collected and questions answered about each exercise. Data will be collected as a group and shared in class. If you are absent, you are responsible for obtaining missing data from the TA.
- Answers to questions in your lab report must be your own and may not be shared.
- You are not allowed to work in groups to develop answers to the questions. Any duplicated/plagiarized answers that are found between lab reports will be considered academic misconduct. If it is determined that you worked with others in developing answers, this will be handled as academic misconduct (see http://www.tamu.edu/aggiehonor).
- If physical assistance is needed to fill out the lab report due to a temporary disability (I can't fill out my lab exercises by myself because my wrist is broken!), permission must be requested from the instructor.
- Lab reports will be due as experiments are finished. These will occur throughout the semester, however, a large number of these will occur towards the end of the semester. Your lab TA will remind you of the exact dates during the semester. For lab reports turned in after the due date, the grade for that report will be reduced by 10% per day late.
Americans with Disabilities Act (ADA) Policy Statement
The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services, in Cain Hall, Room B118, or call 845-1637. For additional information, visit http://disability.tamu.edu.

Copyrights
Please note that all handouts and supplements used in this course are copyrighted. This includes all materials generated for this class, including but not limited to syllabi, exams, in-class materials, review sheets, and lecture outlines. Materials may be downloaded or photocopied for personal use only, and may not be given or sold to other individuals.

Academic Integrity Statement and Policy
No form of academic misconduct will be tolerated in HORT 202 lab. Be aware that copying answers during lab quizzes, any copied or plagiarized answers, or any answers developed in discussion with others in lab reports are forms of academic misconduct. Please refer to Student Rules (http://student-rules.tamu.edu/) and the Honor Council Rules and Procedures (http://www.tamu.edu/aggiehonor). It is the student’s duty to read, understand and comply with these policies.
"An Aggie does not lie, cheat or steal, or tolerate those who do."

Hazardous Materials Statement
Do not perform any procedure until all risks are understood and all actions can be performed in a safe, informed manner. When in doubt, ask for help.
• Hazards in the Hort 202 laboratory include:
 o Chemicals
 • fertilizer solutions (Lab 10)
 • plant growth regulators (Lab 6)
 • rooting compounds (Lab 8)
 • cleaning solutions (Lab 9)
 • concentrated sulfuric acid (Lab 9)
 o Chemicals will be handled with gloves, and with protective clothing when appropriate. Students will be strictly monitored. Any improper exposure to these chemicals should be reported to the instructor immediately.
 o Air-borne irritants (Labs 4-10)
 • perlite
 • vermiculite
 • Particulate masks will be issued to students when appropriate. Students with respiratory problems may be exempt from primary contact with these components with a doctor’s excuse, or by permission of the instructor.
 o Mechanical Hazards (Lab 8 & 9)
 • The use of sharp instruments in lab is required, and students should exercise caution. The best way to avoid injury is to proceed slowly and follow instructions.
Syllabus
Your lab book is divided into sections: Laboratory 1 through Laboratory 14. We will cover 1 laboratory section per week, except week 4. We will be covering these laboratory sections in the order presented in the notebook, except the final two labs, which are switched. A tentative schedule follows:

<table>
<thead>
<tr>
<th>Calendar Week</th>
<th>Laboratory Exercise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1, Jan 14-17</td>
<td>Lab 1, Orientation to the Laboratory</td>
</tr>
<tr>
<td>Week 2, Jan 21-24</td>
<td>Lab 2, Recognition of Plant Structures</td>
</tr>
<tr>
<td>Week 3, Jan 28-31</td>
<td>Lab 3, Plant Identification & Taxonomy</td>
</tr>
<tr>
<td>Week 4, Feb 4-7</td>
<td>Lab 4 & 5, Temperature & Light</td>
</tr>
<tr>
<td>Week 5, Feb 11-14</td>
<td>Lab 6, Growth Control</td>
</tr>
<tr>
<td>Week 6, Feb 18-21</td>
<td>Lab 7, Growing Media & Soils</td>
</tr>
<tr>
<td>Week 7, Feb 25-28</td>
<td>Lab 8, Asexual Propagation</td>
</tr>
<tr>
<td>Week 8, Mar 4-7</td>
<td>Lab 9, Sexual Propagation</td>
</tr>
<tr>
<td>Week 9, Mar 11-14</td>
<td>Spring Break</td>
</tr>
<tr>
<td>Week 10, Mar 18-21</td>
<td>Lab 10, Nutrition & Fertilizers</td>
</tr>
<tr>
<td>Week 11, Mar 25-28</td>
<td>Lab 11, Pest Identification & Control</td>
</tr>
<tr>
<td>Week 12, Apr 1-4</td>
<td>Lab 12, Landscape Plants (field trip)</td>
</tr>
<tr>
<td>Week 13, Apr 8-11</td>
<td>Lab 14, Overview of Turfgrasses (field trip)</td>
</tr>
<tr>
<td>Week 14, Apr 15-18</td>
<td>Lab 13, Overview of Vegetables and Gardening (field trip)</td>
</tr>
<tr>
<td>Week 15, Apr 22-25</td>
<td>Help Week, Remaining Lab Reports Due</td>
</tr>
</tbody>
</table>

Texas A&M University

Core Curriculum

Initial Request for a lower division course included in the current Core Curriculum to be considered for the Fall 2014 Core Curriculum

1. This request is submitted by (department name): Department of Agricultural Economics

2. Course prefix and number: AGEC 105

3. Texas Common Course Number: AGRI 2317

4. Complete course title: Introduction to Agricultural Economics

5. Semester credit hours: 3

6. This request is for consideration in the following Foundational Component Area:
 - □ Communication
 - □ Mathematics
 - □ Life and Physical Sciences
 - □ Language, Philosophy and Culture
 - □ Creative Arts
 - □ American History
 - □ Government/Political Science
 - □ Social and Behavioral Sciences

7. This course should also be considered for International and Cultural Diversity (ICD) designation:
 - □ Yes
 - □ No

8. How frequently will the class be offered? Spring and Fall Semesters

9. Number of class sections per semester: 7 sections in Fall with one being honors and 6 in the Spring*

10. Number of students per semester: 400

11. Historic annual enrollment for the last three years: 2010-2011 801 2011-2012 721 2012-2013 827

This completed form must be attached to a course syllabus that sufficiently and specifically details the appropriate core objectives through multiple lectures, outside activities, assignments, etc. Representative from department submitting request should be in attendance when considered by the Core Curriculum Council.

12. Submitted by:

 [Signature]

 Course Instructor

 Approval:

 [Signature]

 Department Head

 [Signature]

 College Dean/Designee

 [Signature]

 Date 2/11/13

 Date 2/11/13

 Date 2/14/13

For additional information regarding core curriculum, visit the Texas Higher Education Coordinating Board website at www.thecb.state.tx.us/corecurriculum2014

See form instructions for submission/approval process.
*Students have the opportunity to take AGEC 105 at two different times in both the fall and spring semester. Each time period of AGEC 105 has three sections which allows different classifications and majors to enroll in the course. The sections include a major only section; a freshman only section; and a non-major U2, U3, or U4 section. In the fall semester an honors section of AGEC 105 is also offered.
Texas A&M University
Core Curriculum
Initial Request for a Course Addition to the Fall 2014 Core Curriculum
Foundational Component Area: Social and Behavioral Sciences

In the box below, describe how this course meets the Foundational Component Area description for Social and Behavioral Sciences. Courses in this category focus on the application of empirical and scientific methods that contribute to the understanding of what makes us human. Courses involve the exploration of behavior and interactions among individuals, groups, institutions, and events, examining their impact on the individual, society, and culture.

How does the proposed course specifically address the Foundational Component Area definition above?

Economics is a social science that studies how people make decisions under conditions of scarcity – i.e., given constraints on their income, time, resources, etc. Microeconomics focuses specifically on the decisions of individuals, households, and firms. Macroeconomics, in contrast, studies aggregate consequences of these decisions as typically measured by the unemployment rate, inflation, economic growth, etc. This course introduces students to the study of micro and macroeconomics as it relates to the nation’s natural resources, food and fiber systems. The course explores the behavior of firms in determining what to produce and how to produce it. The course also examines the behavior of individuals in deciding what to purchase, how much to purchase, and finally how firms and individuals interact in the market. The course examines how government intervention can make markets either more or less efficient.

Core Objectives

Describe how the proposed course develops the required core objectives below by indicating how each learning objective will be addressed, what specific strategies will be used for each objective and how student learning of each objective will be evaluated.

Critical Thinking (to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information):

Learning Outcomes:
Understand the analytical framework that economists use to investigate the phenomena of the world around them. Students are able to ask and to understand relevant economic questions.
Students are able to analyze data using graphical analysis, and basic mathematical tools, and economic models to vet economic outcomes.
Develop methods of economic thinking applicable to the natural resources, food, and fiber sectors.
Students are able to effectively communicate their analysis of contemporary economic issues using the appropriate combination of words, graphs and charts.

Assessment
Students’ understanding of the tools and methods taught in the class will be assessed based on quizzes, exams, and a comprehensive final exam, as well as written homework assignments and in-class assignments.

Communication (to include effective development, interpretation and expression of ideas through written, oral and visual communication): Agricultural Economics 105 (AGEC 105) simply put is a large class; typically the class size ranges between 120 and 220 students. Students enrolled in AGEC 105 communicate through written homework assignments, e-learning discussions, in-class assignments, review sessions, in-class projects, interactions with TAs and the course instructors.

Learning Outcomes:
Relate the behavior of firms in determining what to produce and how to produce it.
Recognize decision-making under conditions of scarcity.
Recognize the behavior of individuals under income, time, and resource constraints.
Texas A&M University

Core Curriculum

Initial Request for a Course Addition to the Fall 2014 Core Curriculum

Recognize aggregate consequences of decisions on unemployment rates, inflation, and economic growth.

Assessment

Students participate in discussions on e-learning and assessments undertaken by instructors. Students participate in in-class review exercises and students are evaluated accordingly. Voluntary review sessions are available once a week to further accommodate the large class size.

Empirical and Quantitative Skills (to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions):

Learning Outcomes:

Use basic mathematical skills (data analysis, graphical analysis and basic calculations involving percentage changes) to analyze economic problems.

Students are able to use data to estimate important economic measures including own-price, cross-price and income elasticities, marginal, and total utility, costs, revenues, profits, optimal input, output, and consumption levels. Students are able to also use economic data to draw, interpret, and make forecasts on economic outcomes.

Assessment:

Students' knowledge of economic theory and quantitative applications will be assessed based on in-class assignments and quizzes, homework assignments, and tests.

The percentage of students responding correctly to specific questions embedded in exams will be used to assess students' knowledge and understanding of the quantitative tools used to solve economic problems.

Social Responsibility (to include intercultural competence, knowledge of civic responsibility, and the ability to engage effectively in regional, national, and global communities): Students learn about the global economy starting with individual economic decision makers moving to markets and then macroeconomic issues, which play a central role in national political debates and are also at the center of world politics. The class culminates in a discussion of international trade issues. Such knowledge allows students to be better prepared for working in the global community.

Learning Objectives:

Use economic principles to examine contemporary problems facing the natural resource, food and fiber sectors of our economy. Use simple analytical tools to explain contemporary economic policy issues in newspapers and on television news broadcasts. Appreciate how an understanding of economic policy issues is an important prerequisite for responsible citizenship.

Assessment:

Quality of individual contribution on topical issues discussed in class will be used to assess students' performance. Peer review will be used to assess students' knowledge and understanding of contemporary policy issues.

Please be aware that instructors should be prepared to submit samples/examples of student work as part of the future course recertification process.
Agricultural Economics 105
Introduction to Agricultural Economics
Spring 2013

Instructor
Dr. Jim Mjelde
Room 212 C AGLS
845-1492
e-mail j-mjelde@tamu.edu (because of the number of e-mails received to guarantee a response put AGEC 105 in the subject line)

Office Hours
Open Door Policy (usually in the office in the AM) and by Appointment

Class Web Page
http://agecon2.tamu.edu/people/faculty/mjelde-james/AGEC_105/ check this page often for class handouts, notes, etc. The course web page will be used to disseminate class material. http://e-learning.tamu.edu/ is used for distributing grades only.

Teaching Assistants
Kyle Binder AGLS 391
Office Hours: Wednesday 1 – 4 PM
Email: kyle.binder@neo.tamu.edu
Office Hours: TBA

We expect you to come and see us, so do not hesitate.

Class Times
11:30-12:20 MWF KLCT 115 - Sections 501, 502, and 503

Weekly Help Sessions – Thursday 5:30-7:00 AGLS 115. Help sessions are generally taught by the TAs.

Course Description

Characteristics of our economic system and basic economic concepts; survey of the farm and ranch firm and its organization and management; structure and operation of the marketing system; functional and institutional aspects of agricultural finance; government farm programs.

Class Objectives

Economic and financial problems facing society today are complex. This class is designed to provide information on the characteristics of both our micro and macro economic systems and basic economic concepts with emphasis on the nation’s natural resources, food and fiber systems. The objective of this course is to provide students with an understanding of basic economic principles required to critically examine problems facing the agricultural, natural resource, and
other sectors of our economy and how individuals, households and firms make economic decisions and the impact that government intervention can have on the economy.

Learning Outcomes:
- Understand the analytical framework that economists use to investigate the phenomena of the world around them.
- Students are able to ask and to understand relevant economic questions.
- Use graphical analysis and basic mathematics to vet economic outcomes.
- Develop a method of economic thinking applicable to the natural resources, food, and fiber sectors.
- Relate the behavior of firms in determining what to produce and how to produce it.
- Recognize decision-making under conditions of scarcity
- Recognize the behavior of individuals under income, time, and resource constraints.
- Recognize aggregate consequences of decisions on unemployment rates, inflation, and economic growth. Use basic mathematical skills (graphical analysis and basic calculations involving percentage changes) to analyze economic problems.
- Students are able to use data to estimate important economic measures including own-price, cross-price and income elasticities, marginal, and total utility, costs, revenues, profits, optimal input, output, and consumption levels. Students are able to also use economic data to draw, interpret, and make forecasts on economic outcomes. Use economic principles to examine problems facing the natural resource, food and fiber sectors of our economy. Use simple analytical tools to explain contemporary economic policy issues in newspapers and on television news broadcasts. Appreciate how an understanding of economic policy issues is an important prerequisite for responsible citizenship.

Course Prerequisites

None

Required Textbook

Reading assignments come from the required textbook.

or

Course Structure

The course involves lectures, readings, and homework problems. Tests will cover all material presented in the classroom, readings, and the homeworks. Each test will be comprehensive, but will concentrate on the material since the last test. Three tests will be given during the semester and a regularly scheduled final. Only two of the three tests (final is not included) will count towards your final grade. Generally, if you miss a test, this will be the test that is dropped. If a make-up test is necessary, the test will be an essay exam and the student must notify the instructor within 48 hours of the regularly scheduled test date. The test schedule is posted, as such, plan your semester accordingly. The final will be comprehensive and is required of all students.

Class attendance is not required and class roll will not be taken. As a responsible adult, it is up to you to decide if the marginal benefits of class attendance are greater or less than the marginal costs (economic jargon to be discussed in class). During the semester, however, unannounced homeworks that are due at the end of the class period may be assigned and you will lose clicker points.

e-mail

e-mail is a great way to communicate with a large number of people. Throughout the semester I will send notices to your TAMU e-mail account. It is your responsibility to check your university e-mail account. Further, because e-mail is not secure, it is not appropriate to communicate confidential or sensitive matters including specific grades. We are more than happy to discuss grades but please do it in person. For further information, see university regulations concerning e-mail http://student-rules.tamu.edu/rule61.

Course Grade and Requirements

Grades for the exams and homeworks will be posted on e-learning as soon as possible. Please check this web site http://e-learning.tamu.edu/ for your grades and total points earned in the class to date.

<table>
<thead>
<tr>
<th></th>
<th>Total Possible Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two mid-term examinations</td>
<td>200</td>
</tr>
<tr>
<td>Final</td>
<td>150</td>
</tr>
<tr>
<td>Total Test points</td>
<td>350</td>
</tr>
<tr>
<td>Clicker points</td>
<td>75</td>
</tr>
<tr>
<td>Homework</td>
<td>175</td>
</tr>
<tr>
<td>Total Points</td>
<td>600</td>
</tr>
</tbody>
</table>

The total points on the homework will most likely exceed 175 points. Your homework points will be scaled to 175 points based on the percentage of the total points you receive. Final course grade will be determined as follows:
<table>
<thead>
<tr>
<th>Number of Points</th>
<th>Final Letter Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>540 +</td>
<td>A</td>
</tr>
<tr>
<td>480 - 539.9</td>
<td>B</td>
</tr>
<tr>
<td>420 - 479.9</td>
<td>C</td>
</tr>
<tr>
<td>360 - 419.9</td>
<td>D</td>
</tr>
<tr>
<td>< 360</td>
<td>F</td>
</tr>
</tbody>
</table>

The three class sections will be graded as one class. **DO NOT EXPECT A CURVE.**

iclicker

Most class periods there will be several questions answered through the iclicker system. Bring your iclicker to class everyday, failure to bring your iclicker will result in a loss of points that day, no exceptions. Also you must register your iclicker at www.iclicker.com/registration. Your iclicker should be registered before class on Friday January 20th, failure to register will result in a loss of points, again no exceptions. If you miss a class because of an excused absence, you will be allowed to make up any clicker points that you missed. To make up the points, you must (1) let us know that you will miss class **before (if possible)** the class period (per university regulations) and (2) answer the clicker questions (hard copy) before class the next class period.

The number of clicker points during the semester will most likely not equal 75. Similar to homework points, clicker points will be scaled to 75 points. However, one difference is the percentage will be based on three points less than the total available points. This allows you to miss a class (without an unexcused absence) without incurring a penalty on clicker points.

Additional Resources

The Federal Reserve Bank of St. Louis has seven minute or less podcasts pertaining to topics discussed in this class. They are a good resource if you are having trouble understanding a specific concept, http://stlouisfed.org/education_resources/podcasts.cfm. The St. Louis Fed also provides a good overview of the Federal Reserve that you should listen to when we cover macroeconomics, http://www.stlouisfed.org/inplainenglish/intro.htm. You can listen to the video or read the text version.

The History Channel http://www.history.com/ has a series of shows called Modern Marvels (many different topics including agriculture) and American Eats. These shows provide good background information on the changing face of agriculture. You can check the scheduling listing on the above website for times for the programs.
Tentative Test Schedule
Dates are fixed, but the subject material may vary depending on coverage in class.

<table>
<thead>
<tr>
<th>Exam</th>
<th>Date</th>
<th>Topics Tentative</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 21 Martin Luther King Day – No Class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam 1</td>
<td>February 15 - Friday</td>
<td>Chapters 1-3 possibly 4</td>
</tr>
<tr>
<td></td>
<td>Make-up exam -- 7 AM February 18 AGLS 212</td>
<td></td>
</tr>
<tr>
<td>Spring Break March 11-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam 2</td>
<td>March 22 - Friday</td>
<td>Chapters 4-7</td>
</tr>
<tr>
<td></td>
<td>Make-up exam -- 7 AM March 25 AGLS 212</td>
<td></td>
</tr>
<tr>
<td>March 29 Reading day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam 3</td>
<td>April 26 - Friday</td>
<td>Chapters 11-14</td>
</tr>
<tr>
<td></td>
<td>Make-up 7 AM April 29 AGLS 212</td>
<td></td>
</tr>
<tr>
<td>Final - Comprehensive</td>
<td>Sections 501, 502, and 503 – Wednesday May 8 10:30-12:30</td>
<td>Chapters 8, 15 + All previous material</td>
</tr>
</tbody>
</table>

Extra Credit

We are providing you an opportunity to earn up to 10 extra credit points. On media matrix, http://mediamatrix.tamu.edu/ there are two films, supermarkets and lumberyards. To view these films, you will need to login using your netid. Viewing each film is worth up to 5 points to your overall grade. To obtain these points you must obtain from Kari before class an extra credit sheet. There is one sheet for each film, be sure to obtain a sheet for each film you wish to view. To receive credit, the sheet(s) must be correctly completed and return by April 13. We will check the sheet information against media matrix records. Remember the Aggie Code.

NO LATE EXTRA CREDIT SHEETS WILL BE ACCEPTED – extra credit is assigned the first day of class and can be turned in anytime by April 13.

Excused Absences

This class follows the university policy on absences, see http://student-rules.tamu.edu/rule07.

Scholastic Dishonesty

As commonly defined, academic dishonesty / plagiarism consists of presenting as one’s own ideas, words, writings, etc. material that belongs to another. In accordance with this definition, you are committing plagiarism if you copy the work of another person and turn it in as your own, even if you have the permission of the person. It does not matter from where the material is borrowed - a book, an article, material off the web, another student’s paper, etc. - all constitute plagiarism unless the source of the work is fully identified and credited. Identifying a paper or other material, as one’s own that has actually been written or prepared by someone else is always
a case of academic dishonesty. Quotation or borrowing certain material and including, as a small component of one’s own original work, are appropriate if proper credit is given. It is important when using a phrase, a distinctive idea or concept, or a sentence from another source to credit explicitly that source either in the text, a footnote, or endnote. Plagiarism is a violation of academic and personal integrity and carries extremely serious consequences at Texas A&M University. Scholastic dishonesty (including cheating and plagiarism) will not be tolerated. The full consequences of scholastic dishonesty will be pursued consistent with University policy. If you have any questions, please consult the latest issue of the Texas A&M University Student Rules, under the section “Scholastic Dishonesty.” Be especially careful with your written assignments to make certain that any and all sources are explicitly acknowledged in writing. The instructor will make clear which course assignments are collaborative exercises in which it is appropriate for team-members to work together and share their ideas and writing, but not that of those outside their own team.

The Aggie Code of Honor

"An Aggie does not lie, cheat, or steal or tolerate those who do."

Upon accepting admission to Texas A&M University, a student immediately assumes a commitment to uphold the Honor Code, to accept responsibility for learning, and to follow the philosophy and rules of the Honor System. Students will be required to state their commitment on examinations, research papers, and other academic work. Ignorance of the rules does not exclude any member of the TAMU community from the requirements or the processes of the Honor System. For additional information please visit: http://aggiehonor.tamu.edu

When you sign or print your name on any homework or examinations for this class and turn it in to the instructor, you are agreeing to the following statement: "On my honor, as an Aggie, I have neither given nor received unauthorized aid on this academic work."

Americans with Disability Act (ADA)

The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services Room B118 Cain Hall, phone 845-1637, e-mail disability@tamu.edu, or web site http://disability.tamu.edu/.

Copyright Statement

Please note that all handouts and supplements used in this course are copyrighted. This includes all materials generated for this class, including but not limited to syllabi, exams, in-class materials, review sheets, and lecture outlines. Materials may be downloaded or photocopied for personal use only, and may not be given or sold to other individuals.