Life and Physical Sciences
Texas A&M University
Core Curriculum Cover Sheet
Initial Request for a course to be considered for Fall 2014 Core Curriculum

1. This request is submitted by (department name): Animal Science Department

2. Course prefix and number: ANSC 107

3. Texas Common Course Number: AGRI 1319

4. Complete course title: General Animal Science

5. Semester credit hours:

6. This request is for consideration in the following Foundational Component Area:

☐ Communication
☐ Mathematics
☐ Life and Physical Sciences
☐ Language, Philosophy and Culture
☐ Creative Arts
☐ American History
☐ Government/Political Science
☐ Social and Behavioral Sciences

7. This course should also be considered for International and Cultural Diversity (ICD) designation:

☐ Yes ☐ No

8. How frequently will the class be offered? Spring, Summer and Fall

9. Number of class sections per semester: 2 - 4

10. Number of students per semester:

11. Historic annual enrollment for the last three years:

994 1039 1602

This completed form must be attached to a course syllabus that sufficiently and specifically details the appropriate core objectives through multiple lectures, outside activities, assignments, etc. Representative from department submitting request should be in attendance when considered by the Core Curriculum Council.

13. Submitted by:

[Watsonsey]

Course Instructor

Date

14. Department Head

[Kim Dooley]

Date

15. College Dean/Designee

Date

For additional information regarding core curriculum, visit the Texas Higher Education Coordinating Board website at www.thecb.state.tx.us/corecurriculum2014

See form instructions for submission/approval process.
Texas A&M University

Core Curriculum

Initial Request for a Course Addition to the Fall 2014 Core Curriculum

Foundational Component Area: Life and Physical Sciences

In the box below, describe how this course meets the Foundational Component Area description for Life and Physical Sciences. Courses in this category focus on describing, explaining, and predicting natural phenomena using the scientific method. Courses involve the understanding of interactions among natural phenomena and the implications of scientific principles on the physical world and on human experiences.

The proposed course must contain all elements of the Foundational Component Area. How does the proposed course specifically address the Foundational Component Area definition above?

ANSC 107 General Animal Science explores the basic biological principles of each livestock species by furthering the student’s understanding of topics such as anatomy, growth, genetic selection, environmental and human impacts on the production of livestock and food, meat science, animal health, reproductive physiology, and digestive physiology. Utilizing the scientific method, the fundamental science of each topic is developed within each species (beef cattle, dairy cattle, horses, poultry, swine, sheep and goats) in context with marketing and production forces. Gaining a thorough understanding of the animal sciences will help students analyze the livestock industry challenges and formulate responses. In response to these problem solving events, practical application and technological implementation is developed.

Core Objectives

Describe how the proposed course develops the required core objectives below by indicating how each learning objective will be addressed, what specific strategies will be used for each objective and how student learning of each objective will be evaluated.

The proposed course is required to contain each element of the Core Objective.

Critical Thinking (to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information):

How Addressed

Students will develop critical thinking skills through synthesis of the information in relation to 1) the causes and effects of animal diseases, 2) reproductive difficulties, 3) nutritional requirements and 4) animal breeding (genetic selection).

Strategies

Each topic will begin with scientific background, followed by how this relates to environmental and/or biological effects, then practical applications. Examples would be:

Lectures on animal breeding would begin with the general facts about each of the physiological and behavioral characteristics about breeds. Sample topics would include maternal proclivity, rate of growth, degree of heat tolerance and immune resistance. Subsequent discussions and examinations would then utilize this information as a basis for analyzing which breed of animal would be best suited for a specific region with known conditions considering the given attributes of that breed. Further, the class would use the application of this foundational knowledge to innovate outline breedings and management strategies in order to generate hybrid vigor and optimize animal performance. Another example lecture would be the presentation of basic endocrinological principles. As example, students will be instructed on the basal mechanisms of hormone action as they relate to reproductive biology. The class would then be engaged in thought provoking scenarios that pose queries challenging the students to interpret scientific data (such as circulating hormone levels) for use in real world scenarios. An example, would be the question: “Progesterone is present at a high level in the blood of a doe on day 31 post ovulation. Is she pregnant?” Students would then have to utilize the given information in the appropriate context in order to come to a scientifically
Texas A&M University
Core Curriculum
Initial Request for a Course Addition to the Fall 2014 Core Curriculum

supported conclusion. Moreover, translational application of the course materials will also be integrated as the class will explore current reproductive technologies and develop strategies for potential manipulation of hormone cycles in livestock species. Students will be requested to provide innovative responses to the challenges and inquiries animal agriculture will face in the future. Another pillar of the course materials is a focus on nutritional biology. Specifically the nutritional value and purpose of a feedstuff will be presented, along with disorders and disfunctions associated with toxicities and deficiencies involved with each major nutritional requirement. Symptoms of abnormal activity would be revealed to the class, and the students would be expected to provide solutions to the problem after analyzing the animal’s diet. Students will also be given information regarding an animal’s stage of production and be prompted to provide the nutritional components of a diet, which would be most suitable during that phase. Additionally, the class would also analyze the physiological and environmental factors which influence, promote and inhibit animal growth and development. A general understanding of the interaction of breed physiology and behavior as influenced by genetotype, endocrinology, and nutrition will provide the class a basis of knowledge of the collective influences on animal production and performance.

How Evaluated
Scenarios will be presented on exams in order to test the extent to which each student understands and is able to apply the material presented in lecture, and subsequently generate at an appropriate solution for the query given. Scenarios presented will vary from production oriented to occupation specific (i.e. veterinarian, A.I. specialist, feedlot manager, etc.) as to encompass the breadth of information disseminated in the lectures.

Communication (to include effective development, interpretation and expression of ideas through written, oral and visual communication):

How Addressed
Active learning is used in almost all lectures, which includes extensive question and answer dialogue with students during the class. Students will be asked critical thinking type questions throughout each lecture and will be expected to formulate a response (including both written and oral) to best describe how and why they would address the questions provided in their respective individual manners.

Strategies
Students are always prompted to ask questions and provide solutions to the questions asked during class. Students will be asked thought provoking, situation-type questions throughout each lecture in order to stimulate dialogue with the instructor during class. The class will also be asked random questions throughout lecture which will provide feedback on the level of understanding for the majority of the class while maintaining student interaction and classroom engagement. Another strategy that will be utilized to achieve communication in the class is “ask your neighbor time.” A question, statement or mechanistic principle will be provided to the class, and students will be allowed to converse with their neighbor in order to either dispute or agree on an answer or explanation. Individuals throughout the room will then be expected to provide their conclusion and be open for discussion based upon it. This strategy will be implemented to keep the class engaged throughout the lecture and will also provide the students an opportunity to demonstrate their mastery of the subject matter by teaching one another. In addition to “ask your neighbor time,” whole brain teaching methods will be applied. This strategy will enhance the visual communication amongst the class. For example, by connecting a specific term to a gesture, the class will be actively engaged in order to make the gesture each time the term is stated. To encourage further scientific knowledge and aptitude, students will be asked to do supplemental readings which will promote professional development as animal scientists. Students will utilize the American Journal of Animal Science’s free membership offer for undergraduate students where they will be able to access journal articles, symposia archives, and public policy documents (www.asas.org). Reports and group projects will be geared to the style and format of professional documents and presentations at ASAS venues.
Texas A&M University
Core Curriculum

Initial Request for a Course Addition to the Fall 2014 Core Curriculum

How Evaluated
Many of the conclusions reached in class will appear on an exam type material, and the student will be expected to provide the answer which was generated by classroom at the end of the discussion time. Students will also be evaluated on the professional content and format accuracy of each report.

Empirical and Quantitative Skills (to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions):

How Addressed
Each day professionals such as livestock managers, food processors, nutritionists, and veterinarians make decisions based upon numerical (census), financial, or physiological data; therefore, students must achieve the knowledge and level of understanding to make profitable and ethical decisions when they enter the professional workforce. Students will acquire the skills necessary to effectively analyze data and further develop an accurate conclusion based upon facts such as breeding evaluation data via utilization of EPDs, market classifications and grades as well as diagnostic assessment of hormone levels and nutrient content of a particular feedstuff.

Strategies
Lectures will include the analysis of numerical data sets which are in support of the understanding of a specific topic. Sample lectures would include:
- Evaluation of Expected Progeny Differences (EPD's) will allow for interpretation of the data for specific heritable traits as well as predictions of the best sire to use in a given scenario. Carcass data traits will be examined and conclusions will be drawn in relation to the current market trends. Marbling score in conjunction with yield grade are traits upon which the market commonly emphasizes. Value determining traits, such as these, will also be discussed along with the impact of changes to the product in these specific quantitative areas. Students will also be expected to describe the correlation of differing numerical traits and the price margins. Another lecture will cover the topic of nutrient requirements in livestock and analysis of feedstuffs. Students must process statistical information and come to an informed decision or solution as to what to feed in order to maximize profits. For example, the digestibility and passage rate of a particular feedstuff alludes to the quality of a feedstuff and affects the rate of growth or efficiency of the individual to which it was fed. The class will also decipher hormone levels in accordance with the established profiles of certain stages of development, leading to the control of physiological phenomena in livestock species. The class will also be expected to utilize such information in order to predict the effectiveness and method of hormonal manipulations for breeding purposes.

How Evaluated
Numerical data will be given on exams and quizzes along with a scenario or situation. The students will be evaluated based upon the correct interpretation of the data and rationale for the answer/solution provided.

Teamwork (to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal):

How Addressed
The majority of the team work employed in this class is attributed to hands-on models, group interpretations, and peer explanation of a specific lecture topic.

Strategies
Lectures will present challenges to students' full understanding of various topics in Animal Science and are designed in order to provoke thoughtful responses after peer collaboration. Examples include:
- Creating a hormone flow chart that specifies the endocrine gland or cell where specific hormones are produced, upon what tissue targets the hormone acts, and the mechanism of regulation. Students are encouraged to make their own study materials and have them revised by peers. This ensures optimal achievement of comprehension for each student during their learning experience. Also, during the lecture over meiotic division and independent assortment,
Texas A&M University

Core Curriculum

Initial Request for a Course Addition to the Fall 2014 Core Curriculum

Volunteers from the class are expected to pose as model pieces to the overall concept by acting as chromosomes and groups of cells. The same approach is used to further develop the understanding of hormone signals and regulation. Student volunteers act as a model of the female reproductive tract and communication system as they are assigned structures and specific hormones. Next, they are instructed to “send the appropriate signals” to achieve the desired event (ovulation, formation of a corpus luteum (CL), luteinization of the CL, etc.).

How Evaluated
The class will be evaluated as a whole based upon participation in class discussion. In smaller class sections, the students will also be evaluated on the quality of the team’s flow charts in relevance to the grading rubric.

Please be aware that instructors should be prepared to submit samples/examples of student work as part of the future course recertification process.
Fall 2013 Course Syllabus
General Animal Science – ANSC 107-502
T/R 9:35-10:50- Kleberg Building – Room 115

Professor: Dr. Shawn Ramsey
Associate Professor

Required Text: ANSC 107 Class Notes, MSC only
Optional Text: Scientific Farm Animal Production, Taylor, (any edition)

Course Description:
ANSC 107 General Animal Science explores the basic biological principles of each livestock species by furthering the student's understanding of topics such as anatomy, growth, genetic selection, environmental and human impacts on the production of livestock and food, meat science, animal health, reproductive physiology, and digestive physiology. Utilizing the scientific method, the fundamental science of each topic is developed within each species (beef cattle, dairy cattle, horses, poultry, swine, sheep and goats) in context with marketing and production forces. Gaining a thorough understanding of the animal sciences will help students analyze the livestock industry challenges and formulate responses. In response to these problem solving events, practical application and technological implementation is developed.

THIS COURSE MUST BE TAKEN IN CONJUNCTION WITH ANSC 108! The grade is not combined!

Grading Policy
Grades will be based upon the following:
- Posted Quizzes-4 (25 pts. each)
- Surveys of Knowledge - 4
 - Without final total 500 points
 - With final total 600 points
- Comprehensive Final (optional based on absences)
 - Without final total 500 points
 - With final total 600 points

The standard grading procedure percentage scale will be used:
(90 and above = A, 80-89 = B, 70-79 = C, 60-69 = D, and below = F)

<table>
<thead>
<tr>
<th>No Final</th>
<th>With Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>450-500-A</td>
<td>540-600-A</td>
</tr>
<tr>
<td>400-449-B</td>
<td>480-539-B</td>
</tr>
<tr>
<td>350-399-C</td>
<td>420-479-C</td>
</tr>
<tr>
<td>300-349-D</td>
<td>360-419-D</td>
</tr>
<tr>
<td>299-000-F</td>
<td>369-000-F</td>
</tr>
</tbody>
</table>

Attendance Policy:
The FINAL SURVEY OF KNOWLEDGE is optional for those students who have PERFECT attendance. University Policy-Make ups.
If you require a make-up exam, this will only be possible if your reason for missing class is due to a properly documented and reported university excused absence in accordance with Texas A&M University Student Rule 7. To be excused the student must notify his or her instructor in writing (acknowledged email is acceptable) prior to the date of absence if such notification is feasible. In cases where advance notification is not feasible (e.g. accident or emergency) the student must provide notification by the end of the second working day after the absence. This notification should include an explanation and written documentation of why notice could not be sent prior to the class. I will need to keep a copy of your documentation. In this and all other areas, we follow university policy. Make-up quizzes will be given, but you are only eligible if the absence is University excused. Make-up quizzes will be fill in the blank, and short answer format. Please see www.student-rules.tamu.edu for more information on attendance policy.

Americans With Disabilities Act (ADA) Policy Statement
The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services, in Cain Hall, Room B118, or call 979-845-1637. For additional information visit http://disability.tamu.edu

"Aggies do not lie, cheat or steal, nor do they tolerate those who do."
<table>
<thead>
<tr>
<th>Date:</th>
<th>Subject:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday, August 27</td>
<td>Global Impact of Animal Science and General Terminology</td>
</tr>
<tr>
<td>Thursday, August 29</td>
<td>Origin and Genetic Variation of Breeds of Livestock</td>
</tr>
<tr>
<td>Tuesday, September 3</td>
<td>Interaction Between Genes and Environment</td>
</tr>
<tr>
<td>Thursday, September 5</td>
<td>Livestock Production Systems – Beef, Dairy Cattle and Horse</td>
</tr>
<tr>
<td>Tuesday, September 10 *</td>
<td>Livestock Production Systems – Sheep, Goats and Swine</td>
</tr>
<tr>
<td>Thursday, September 12</td>
<td>Classification Standards and Grades for Market Animals</td>
</tr>
<tr>
<td>TBA</td>
<td>FINAL SURVEY OF KNOWLEDGE</td>
</tr>
<tr>
<td>SURVEY OF KNOWLEDGE I</td>
<td></td>
</tr>
<tr>
<td>Tuesday, September 17</td>
<td>Basic Meat Science</td>
</tr>
<tr>
<td>Thursday, September 19</td>
<td>Effects of Chemical and Fat Composition on Muscle Tissue</td>
</tr>
<tr>
<td>Tuesday, September 24</td>
<td>Microorganisms and Impact on Food/Food Safety</td>
</tr>
<tr>
<td>Thursday, September 26</td>
<td>Animal Health/ Disease and Well-Being</td>
</tr>
<tr>
<td>Tuesday, October 1</td>
<td>Basic Genetics of Livestock</td>
</tr>
<tr>
<td>Thursday, October 3 *</td>
<td>Genetic Evaluation of Breeding Animals</td>
</tr>
<tr>
<td>Tuesday, October 8</td>
<td></td>
</tr>
<tr>
<td>SURVEY OF KNOWLEDGE II</td>
<td></td>
</tr>
<tr>
<td>Thursday, October 10</td>
<td>Male Reproductive Anatomy</td>
</tr>
<tr>
<td>Tuesday, October 15</td>
<td>Female Reproductive Anatomy</td>
</tr>
<tr>
<td>Thursday, October 17</td>
<td>Hormone Mechanisms and Physiology</td>
</tr>
<tr>
<td>Tuesday, October 22</td>
<td>Artificial Insemination/Estrus Synchronization</td>
</tr>
<tr>
<td>Thursday, October 24</td>
<td>Embryo Transfer and Advanced Technologies</td>
</tr>
<tr>
<td>Tuesday, October 29*</td>
<td>Environmental Physiology and Thermoregulation</td>
</tr>
<tr>
<td>Thursday, October 31</td>
<td></td>
</tr>
<tr>
<td>SURVEY OF KNOWLEDGE III</td>
<td></td>
</tr>
<tr>
<td>Tuesday, November 5</td>
<td>Ruminant Digestive System Anatomy</td>
</tr>
<tr>
<td>Thursday, November 7</td>
<td>Monogastric Digestion System Anatomy</td>
</tr>
<tr>
<td>Tuesday, November 12</td>
<td>Comparative Physiology of Digestion</td>
</tr>
<tr>
<td>Thursday, November 14</td>
<td>Chemical Evaluation of Nutrients and Feedstuffs</td>
</tr>
<tr>
<td>Tuesday, November 19*</td>
<td>Nutritional Requirements for Body Functions</td>
</tr>
<tr>
<td>Thursday, November 21</td>
<td></td>
</tr>
<tr>
<td>SURVEY OF KNOWLEDGE IV</td>
<td></td>
</tr>
<tr>
<td>Tuesday, November 26</td>
<td>Thanksgiving Break</td>
</tr>
<tr>
<td>Thursday, November 28</td>
<td></td>
</tr>
<tr>
<td>Tuesday, December 3</td>
<td>Rdefined day (attend Thursday classes)</td>
</tr>
<tr>
<td>TBA</td>
<td></td>
</tr>
</tbody>
</table>
Texas A&M University

Core Curriculum Cover Sheet

Initial Request for a course to be considered for the Fall 2014 Core Curriculum

1. This request is submitted by (department name): NFSC

2. Course prefix and number: NUTR 222
3. Texas Common Course Number: Click here to enter text.

4. Complete course title: Nutrition for Health and Health Care
5. Semester credit hours: 3

6. This request is for consideration in the following Foundational Component Area:

☐ Communication
☐ Mathematics
☒ Life and Physical Sciences
☐ Language, Philosophy and Culture

☐ Creative Arts
☐ American History
☐ Government/Political Science
☐ Social and Behavioral Sciences

7. This course should also be considered for International and Cultural Diversity (ICD) designation:

☐ Yes
☒ No

8. How frequently will the class be offered? Fall, Spring, Summer

9. Number of class sections per semester: One to three

10. Number of students per semester: 100+

11. Historic annual enrollment for the last three years: Sp 12 - 48, Sum 12 - 7, Fa 12 - 57

This completed form must be attached to a course syllabus that sufficiently and specifically details the appropriate core objectives through multiple lectures, outside activities, assignments, etc. Representative from department submitting request should be in attendance when considered by the Core Curriculum Council.

13. Submitted by:

Course Instructor

Date 6/24/13

14. Approvals:

Department Head

Date 6/25/2013

15. College Dean/Designee

Date 6/25/13

For additional information regarding core curriculum, visit the Texas Higher Education Coordinating Board website at www.thecb.state.tx.us/corecurriculum2014

See form instructions for submission/approval process.
Texas A&M University
Core Curriculum
Initial Request for a Course Addition to the Fall 2014 Core Curriculum

Foundational Component Area: Life and Physical Sciences

In the box below, describe how this course meets the Foundational Component Area description for Life and Physical Sciences. Courses in this category focus on describing, explaining, and predicting natural phenomena using the scientific method. Courses involve the understanding of interactions among natural phenomena and the implications of scientific principles on the physical world and on human experiences.

The proposed course must contain all elements of the Foundational Component Area. How does the proposed course specifically address the Foundational Component Area definition above?

The learning outcomes and teaching strategies used in Nutrition for Health and Healthcare, NUTR 222, fully meet the expectations for the Life and Physical Sciences foundational component area. The primary focus of this course is to describe the fundamental principles of nutrition and the role the diet plays in disease prevention and treatment. Basic understanding of impaired physiology that leads to diagnosis of disease is presented. Students then learn how specific dietary components such as nutrients influence the systems, which ultimately results in either enhanced or suppressed risk of chronic disease development. In addition, how the scientific method is used to develop correlations between dietary choices and disease incidence are also discussed. Finally, students learn how modifications to lifestyle choices related to food selections have a significant impact on health status. This is an online course that meets the core objectives through instructional techniques and individual assignments.

Core Objectives

Describe how the proposed course develops the required core objectives below by indicating how each learning objective will be addressed, what specific strategies will be used for each objective and how student learning of each objective will be evaluated.

The proposed course is required to contain each element of the Core Objective.

Critical Thinking (to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information):

Critical thinking is a key component of this course. Much of the lecture content will focus on examples of epidemiological and experimental observations that have lead to the scientifically grounded correlations between an individual's diet and health status. In addition, questions will be posed in lectures in the latter half of the course that challenge the students to apply what we have been learning in the earlier examples to scientific questions relevant to that day's lecture. The primary place that critical thinking will be assessed is in case study assignments. For these assignments students must take knowledge learned in the course and analyze a hypothetical situation regarding the health status of an individual(s). Typically these assignments result in the student needing to synthesize information from multiple sources and sections of the course in order to come up with novel answers to questions asked.

Communication (to include effective development, interpretation and expression of ideas through written, oral and visual communication):

Within the case study assignments described above a student's ability to effectively communicate their interpretations of the problems and descriptions of correct answers to the questions will be routinely assessed in both peer- and instructor-evaluation formats. For the first case study, students will work in groups and students will be
required to communicate ideas in written format via the chat function in eLearning. A specific grading rubric is used by team members to evaluate other students in their group while a separate rubric is used by the instructor to assess overall communication skills. In addition, students are encouraged to participate in online discussions that go on throughout the course and are incentivized to do so by offering bonus points or tests. These activities are not graded assignments because we have found that open communication between students results in an intriguing flow of ideas. However, the instructor will provide routine feedback to students as to how they may most effectively communicate their ideas to garner support for their point of view. Finally, the videos and slide sets used for lectures in this course are intended to teach students how appropriate visual aids and graphics can dramatically improve the effectiveness of communicating complex scientific ideas to multiple types of audiences.

Empirical and Quantitative Skills (to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions):

As stated above, much of the basis for what we know about the influence of diet on chronic disease is based on epidemiological and experimental findings. In the course, specific observational facts are presented and appropriate numerical data provided to support these claims. Students are then required to utilize these findings to draw conclusions to answer examination questions. These quantitative skills are also routinely assessed in the case study assignments depending on the hypothetical situation proposed. However, intentional instruction is provided as to how to quantitatively interpret these types of data and all exams include test questions related to evaluating a student's competency in this area.

Teamwork (to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal):

As previously stated, the first case study assignment is a group project in which three to four students work together. The ability of students to express their opinions and views and to accept those of others is central to this assignment. The nature of the hypothetical situations presented in these assignments is that while they are based on scientific fact related to human physiology, they also very often have a sociological/psychological component that results in different points of view that must be resolved between students prior to completing the assignment. For example, we often challenge students to use scientific findings to come up with specific recommendations for complex problems such as the growing prevalence of childhood obesity.

Please be aware that instructors should be prepared to submit samples/examples of student work as part of the future course recertification process.
Nutrition for Health and Health Care
NUTR 222
Department of Nutrition and Food Science
Course Syllabus- Fall 2013

Instructor:
Dr. Clinton Allred
Office: 214B Cate Mattil
Phone: 979-862-7767

Credits: 3
Office Hours: by appointment

All e-mail communication should go through the e-Learning website.

Pre-requisites: None

Class Materials: Recorded lectures will be made available in a timely manner, usually two per week and will remain available the remainder of the semester. Lectures will be posted by 10:00 am Monday morning each week. In addition, copies of the slides from each lecture will be available in two different file formats so students can print them and take notes. All materials for each lecture will be provided in individual folders on the eLearning website.

Announcements: Please check the eLearning website frequently (i.e. daily) for important class announcements.

Course Content: Analysis of nutrition with emphasis on providing a basic understanding of nutrition and its role in disease prevention and treatment.

Course Objectives and Outcomes:
Upon completion of the course students will be able to
1. Describe the basic chemistry and biological functions of macro- and micro-nutrients in the body.
2. Summarize the digestion and absorption of these nutrients.
3. Identify nutritional and dietary factors that influence growth, development, maintenance of health, and development of chronic disease.
4. Evaluate dietary intake, nutritional needs, and overall health of individuals
5. Understand the role that individual health care providers (e.g. nurses, registered dieticians, physicians, and health educators) play in clinical nutritional therapy.

Evaluation:
Assignments (2 case studies 25 pts each)
Quizzes (best 5 of 6 given x 10 pts) covering most recent lecture material
Tests (4x 100 pts)

Total Points 500

[A=≥89.5%; B=89.4-79.5%; C=79.4-69.5%; D=69.4-59.5%; F=≤59.4% Total Points]
Readings: It is suggested that students get a copy of the text book and read the associated chapters at the same time as we are covering the materials in lectures. A reading list that coincides with each lecture is provided at the end of this syllabus.

Quizzes and Exams: All quizzes and tests will be of a multiple choice format. On the dates listed in the course timeline the appropriate quiz will be posted. Students will sign in to take the quiz and will be given a set amount of time (approximately 8 min) to complete the examination. Six quizzes will be given and the five best scores will be counted. Tests will be given on the dates listed at 7:00 pm in room 123 in the Kleberg Building, or otherwise coordinated with the instructor and student. Each quiz will be worth a total of 10 points and the tests will be worth 100 each. Each quiz/test will be weighted in the grading scale as described under the evaluation section of this syllabus.

Exam Make-Up Policy: Make-up tests will only be given for university excused absences. In this case, it is the student’s responsibility to arrange a date and time to make up the missed test with the instructor. Please reference Student Rule 7 regarding attendance and make-up policies. See http://student-rules.tamu.edu/rule07.

Assignments: The primary outside of lecture assignments will be case studies. For case studies, materials from class will be utilize to explain a underlying health concern for an individual in a hypothetical situation and typically what modifications to their lifestyle including diet can be made to improve/prevent the health problem. The first of these two assignments will be a group project. Each student will be assigned to a group of three to four people. It is anticipated that students will communicate with each other via the chat function on the eLearning website or by some other means that allows for equal exchange of idea and documentation of the oral communications. After completing the case study each student will evaluate the other team members and accuracy of answers and written and oral communication during the project will be assessed.

Participation and Bonus Points: It is expected that students will be viewing the online lectures and taking notes in a timely manner throughout the class. Success in the class will depend on it as many of the questions on tests will come from material that I verbally provide in the lectures as opposed to the slides themselves. In addition, prior to each test, during one of the lectures, I will introduce a discussion topic. Then I will post a “starter comment” to a new discussion board topic on the classes’ eLearning webpage. If you enter a topic relevant statement in response to my comment or that of another student, then you will receive bonus points on the upcoming test. Topics will be chosen to induce debate and multiple comments per student are encouraged. However, comments need to be respectful and limited to the topic at hand. Inappropriate comments will result in no points for the offending student.
Academic Dishonesty: Texas A&M University students are responsible for authenticating all work to an instructor. The inability to authenticate one’s work, should the instructor request it, is grounds to initiate an academic dishonesty case.

Academic dishonesty includes, but is not exclusive to the following acts.

1. Cheating:
 Intentionally using or attempting to use unauthorized materials, information, notes, study aids or other devices or materials in any academic exercise.

2. Fabrication:
 Making up data or results, and recording or reporting (submitting) them.

3. Multiple Submissions:
 Submitting substantial portions of the same work (including oral reports) for credit more than once without authorization from the instructor of the class.

4. Plagiarism:
 The appropriation of another person’s ideas, processes, results, or words without giving appropriate credit.

5. Complicity:
 Intentionally or knowingly helping, or attempting to help, another commit an act of academic dishonesty.

Additional information may be obtained at http://aggiehonor.tamu.edu

Students with disabilities:

The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services, in Cain Hall, Room B118, or call 845-1637. For additional information visit http://disability.tamu.edu.
Nutrition 222
Fall 2013
Tentative Course Outline

Date: Activity
August 26th Course introduction video and lecture 1
September 2nd Lecture 2

Date: Day of Week What's Covered
September 11th Wednesday (Quiz 1) Lecture 1 & 2
September 18th Wednesday (Quiz 2) Lecture 3 & 4
September 24th Tuesday TEST I Lecture 1 - 6
October 2nd Wednesday (Quiz 3) Lecture 7 & 8
October 9th Wednesday (Quiz 4) Lecture 9 & 10
October 15th Tuesday TEST II Lecture 7 - 11
October 23rd Wednesday (Quiz 5) Lecture 12 & 13
October 31st Thursday (Case Study #1 Due) Lecture 12 - 16
November 5th Thursday TEST III Lecture 17 & 18
November 13th Wednesday (Quiz 6) Lecture 17 & 18
November 22nd Friday (Case Study #2 Due) Lecture 17 - 21
December 3rd Tuesday TEST IV

Lecture # Topics:
Lecture 1 Overview of nutrition
Lecture 2 Nutrition in health care
Lecture 3 Carbohydrates
Lecture 4 Health effects of sugars, starches and fibers
Lecture 5 Lipids
Lecture 6 Health effects of fats
Lecture 7 Proteins and amino acids
Lecture 8 Health effects of protein
Lecture 9 Energy balance and body composition
Lecture 10 Weight management: over and underweight
Lecture 11 Vitamins
Lecture 12 Water and Minerals
Lecture 13 Digestion and absorption
Lecture 14 Enteral and parenteral nutrition support
Lecture 15 Nutrition and upper gastrointestinal disorders
Lecture 16 Nutrition and lower gastrointestinal disorders
Lecture 17 Nutrition and liver diseases
Lecture 18 Nutrition in metabolic and respiratory stress
Lecture 19 Nutrition and diabetes mellitus
Lecture 20 Nutrition and disorders of the heart and blood vessels
Lecture 21 Nutrition and cancer and HIV Infection
SUGGESTED READING

The text for this course is *Nutrition for Health and Health Care, 4th Edition* and the suggested portions of the book to be read to accompany topics covered in class are listed below.

Textbook Readings:

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>CHAPTER</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 1 Overview of Nutrition</td>
<td>1</td>
<td>1-32</td>
</tr>
<tr>
<td>Lecture 2 Nutrition in Health Care</td>
<td>1; 13</td>
<td>33-36; 381-405</td>
</tr>
<tr>
<td>Lecture 3 Carbohydrates</td>
<td>3</td>
<td>63-76</td>
</tr>
<tr>
<td>Lecture 4 Health Effects of Sugars, Starches, and Fibers</td>
<td>3</td>
<td>77-90</td>
</tr>
<tr>
<td>Lecture 5 Lipids</td>
<td>4</td>
<td>91-98</td>
</tr>
<tr>
<td>Lecture 6 Health effects of fats</td>
<td>4</td>
<td>98-118</td>
</tr>
<tr>
<td>Lecture 7 Proteins and amino acids</td>
<td>5</td>
<td>119-126</td>
</tr>
<tr>
<td>Lecture 8 Health effects of protein</td>
<td>5</td>
<td>126-140</td>
</tr>
<tr>
<td>Lecture 9 Energy balance and body composition</td>
<td>6</td>
<td>141-166</td>
</tr>
<tr>
<td>Lecture 10 Weight management: over and underweight</td>
<td>7</td>
<td>167-199</td>
</tr>
<tr>
<td>Lecture 11 Vitamins</td>
<td>8</td>
<td>200-236</td>
</tr>
<tr>
<td>Lecture 12 Water and Minerals</td>
<td>9</td>
<td>237-270</td>
</tr>
<tr>
<td>Lecture 13 Digestion and absorption</td>
<td>2</td>
<td>37-62</td>
</tr>
<tr>
<td>Lecture 14 Enteral and parenteral nutrition support</td>
<td>15</td>
<td>435-467</td>
</tr>
<tr>
<td>Lecture 15 Nutrition and upper gastrointestinal disorders</td>
<td>17</td>
<td>488-512</td>
</tr>
<tr>
<td>Lecture 16 Nutrition and lower gastrointestinal disorders</td>
<td>18</td>
<td>513-543</td>
</tr>
<tr>
<td>Lecture 17 Nutrition and liver diseases</td>
<td>19</td>
<td>544-561</td>
</tr>
<tr>
<td>Lecture 18 Nutrition in metabolic and respiratory stress</td>
<td>16</td>
<td>468-487</td>
</tr>
<tr>
<td>Lecture 19 Nutrition and diabetes mellitus</td>
<td>20</td>
<td>562-590</td>
</tr>
<tr>
<td>Lecture 20 Nutrition and disorders of the heart and blood vessels</td>
<td>21</td>
<td>591-620</td>
</tr>
<tr>
<td>Lecture 21 Nutrition and cancer and HIV infection</td>
<td>23</td>
<td>406-434; 648-672</td>
</tr>
</tbody>
</table>